

74 Berkeley Street, Toronto, ON M5A 2W7 Tel: 647-795-8153 | www.pecg.ca

Updated Hydrogeological Investigation – Proposed Development at 822, 828, 834, 836, 838 Richmond Street West, Toronto, Ontario

Palmer Project # 2001512

Prepared For Watters Environmental Group Inc

November 04, 2021

November 04, 2021

Jessie Ren, M.Sc., P.Geo., EP Project Manager Watters Environmental Group Inc. 9135 Keele Street, Unit A1 Concord, Ontario L4K 0J4

Dear Jessie:

Re: Updated Hydrogeological Investigation – Proposed Development at 822, 828 and 834 to 838 Richmond Street West, Toronto, Ontario Project #: 2001512

Palmer Environmental Consulting Group was retained by Watters Environmental Group Inc (the "client") to complete a preliminary and detailed hydrogeological investigation to support the proposed future redevelopment of the central and western portions of 828 to 838 Richmond Street West, Toronto, Ontario. This report has been updated from the August 12, 2021 final report to include 3 months of water level monitoring data. It is Palmer's understanding that it is intended that the site be redeveloped into a six-storey residential building with a maximum of two levels of underground parking. Currently, 822 Richmond Street West building is occupied by a four storey commercial building with the first floor partially below grade. 828 Richmond Street West building is occupied by a one storey commercial building with a full basement and 834, 836 and 838 Richmond Street West are currently operating as a parking lot.

This report summarizes the results of the hydrogeological assessment including a characterization of site geology and hydrostratigraphy, groundwater levels, and estimates for construction dewatering rates based on a non-watertight scenario. Based on the findings, a registration on the MECP EASR system is recommended for short-term construction dewatering. A long-term PTTW is not expected to be required. Both a temporary and long-term discharge permit with Toronto Water will be required for this project to manage the discharge of water during construction and during operation of the new building.

We trust that this report will be satisfactory for your current needs. If you have any questions or require further information, please contact our office at your convenience. This report is subject to the Statement of Limitations provided at the end of this report.

Yours truly, Palmer Environmental Consulting Group Inc.

Cle

Jason Cole, M.Sc., P.Geo. Vice President, Principal Hydrogeologist *November 04, 2021* 2001512 - Hydrogeological Investigation 822, 828 and 834 to 838 Richmond Street West

Table of Contents

1.	. Introduction					
	1.1 Scope	of Work	5			
2.	Hydrogeolo	gical Conditions	7			
	2.1 Physio	graphy	7			
	2.2 Surficia	al Geology	7			
	2.3 Bedroc	k Geology	7			
	2.4 Draina	ge	10			
	2.5 Hydros	stratigraphy	10			
3.	Hydrogeolo	gical Investigations	10			
	3.1 Previou	us Borehole Drilling and Monitoring Well Installations	10			
	3.1.1	Site Specific Geology	11			
	3.2 Ground	Jwater Levels and Flow	12			
	3.3 Hydrau	Ilic Conductivity	12			
	3.4 Ground	dwater Chemistry	14			
4.	Hydrogeolo	gical Assessment	14			
	4.1 Short T	Ferm Construction Dewatering	14			
	4.2 Source	Water Protection	17			
5.	Hydrogeolo	gical Construction Considerations	19			
	5.1 Short T	Ferm Construction Dewatering	19			
	5.2 Long T	erm Foundation Dewatering	19			
	5.3 Discha	rge and Monitoring Plan	19			
	5.4 Impact	Assessment	21			
	5.4.1	Natural Environment	21			
	5.4.2	Private Water Wells	21			
	5.4.3 5.5 Monitor	ring and Supplemental EASP Information	21			
	5.5 1001110	ning and Supplemental EASR Information	21			
6.	Summary a	nd Conclusions	25			
7.	Statement of Limitations					
8.	Signatures					

Palmer...

Hydrogeological Investigation – Proposed Development at 822, 828 and 834 to 838 Richmond Street West, Toronto, Ontario

9.	References	28	3
----	------------	----	---

List of Figures

Figure 1. Borehole and Monitoring Well Locations	6
Figure 2. Physiographic Region	8
Figure 3. Surficial Geology	9
Figure 4. Source Water Protection	18

List of Tables

Table 1. Borehole and Monitoring Well Details	. 11
Table 2. Groundwater Levels	. 12
Table 3. Hydraulic Conductivity Summary	. 13
Table 4. Groundwater Quality Exceedances	. 14
Table 5. Dewatering Rate Estimate, Unconfined Fill	. 17
Table 6. Dewatering Rate Estimate, Confined Silty Clay	. 17
Table 7. Hydrogeological Monitoring Plan	. 20
Table 8. Supplemental Hydrogeological EASR Information	. 22

List of Appendices

Appendix A.	Site Plan and Borehole Logs (Watters, 2021)
Appendix B.	Grain Size Distribution Analyses (Terrapex, 2021)
Appendix C.	Single Well Response Tests (Palmer, 2021)
Appendix D.	Laboratory Certificate of Analysis (ALS, 2021)

1. Introduction

Palmer Environmental Consulting Group (Palmer) was retained by Watters Environmental Group Inc. (the "client") to complete a preliminary and detailed hydrogeological investigation to support the proposed future redevelopment of the central and western portions of 828 to 838 Richmond Street West, Toronto, Ontario. It is Palmer's understanding that it is intended that the site be redeveloped into a six storey residential building with a maximum of two levels of underground parking extending approximately 6 m below ground surface (mbgs). Currently, 822 Richmond Street West building is occupied by a four storey commercial building with the first floor partially below grade. The eastern portion of the site (822 Richmond Street West, is understood to remain undisturbed. 828 Richmond Street West building is occupied by a one storey commercial building with a full basement and 834, 836 and 838 Richmond Street West are currently operating as a parking lot with three former residential buildings in the southern portion.

This assessment focuses on characterizing the hydrogeological conditions to estimate the dewatering requirements for the project, provide hydrogeological input into foundation design, and to evaluate groundwater discharge and permitting options during construction and for long-term drainage. Based on discussion with Watters, it is understood that short-term construction-related dewatering could be managed through obtaining a temporary discharge permit from the City of Toronto. Under the Ministry of the Environment, Conservation and Parks (MECP), registration on the Environmental Activity and Sector Registry (EASR) is required when dewatering is expected to be greater than 50,000 L/day but less than 400,000 L/day per non-overlapping water-taking area at a project site. If dewatering is expected to be greater than 400,000 L/day per non-overlapping water-taking area, a Category 3 Permit to Take Water (PTTW) from the MECP will be required.

1.1 Scope of Work

Palmer's Hydrogeological Investigation was completed based on borehole drilling and groundwater monitoring well installations completed by the client and a preliminary geotechnical report prepared by Alston Geotechnical Consultants Inc. ("Alston"). Palmer has relied on these boreholes logs and well records in its hydrogeological assessment. The logs and a site plan prepared by the client can be found in **Appendix A**. Palmer's scope of work for the Hydrogeological Investigation included the following main tasks:

- Obtain and review applicable background information including surficial geology, bedrock geology, physiography mapping, and previous reporting including:
 - "Report on Phase Two Environmental Site Assessment, 822, 828 and 834 to 838 Richmond Street West and 25 McMurrich Street, Toronto, Ontario" (Report No. 4863-18-B), Toronto Inspections Limited ("TIL"), November 01, 2018;
 - "Technical Memorandum: Preliminary Geotechnical Review, 822, 828 and 834 to 838 Richmond Street West and 25 McMurrich Street, Toronto" (Ref. No. 21.010), Alston Geotechnical Consultants Inc. ("Alston"), May 13, 2021; and
 - Grain size distribution data for the site provided by Alston Geotechnical Consultants and Terrapex on July 2nd, 2021.

- Review the 2021 Watters Environmental Group Inc. (Watters) borehole (BH) drilling and groundwater monitoring well (MW) installation logs. In total, six (6) BH/MWs were completed at the site to depths ranging from 4.3 to 12.25 metres below ground surface (mbgs);
- Collect groundwater level measurements to establish the water table and piezometric head levels;
- Determine the hydraulic conductivity of the geological materials through completing a single well response test (i.e., slug test) on a selected well and analyzing grain-size of selected soil samples;
- Collect one (1) groundwater sample for analysis to compare groundwater quality against City of Toronto Storm and Sanitary Sewer discharge criteria;
- Calculate short-term and long-term dewatering discharge rates for the construction phase of the project and post-construction conditions, respectively;
- Provide hydrogeological recommendations for foundation design and construction methods;
- Provide recommendations for a PTTW or EASR submission to the MECP for construction dewatering; and
- Produce a Detailed Hydrogeological Investigation Report outlining the results of the investigation

2. Hydrogeological Conditions

2.1 Physiography

The site is located on the southern portion of the Iroquois Plain physiographic region **(Figure 2)** (Chapman and Putnam, 1984). In line with the site, the Iroquois Plain region extends roughly three kilometres in width along the lowlands bordering Lake Ontario sloping gently northward at a rate of 15 to 18 metres every 1.5 km with several drumlins exhibiting an alignment in a northeast-southwest direction (Singer et al., 2003). The region is characterized predominantly by thin glaciolacustrine sand, silt, and clay deposits at the surface, underlain by regional till units.

2.2 Surficial Geology

Ontario Geological Survey (OGS) mapping (**Figure 3**) indicates that the site is situated in an area primarily composed of undifferentiated older Halton Till deposited during the Pleistocene epoch. The tills include some interbedded lake deposits and are present at the site in a northwest to southeast alignment. The lake deposits are further described as silt and clay along with distinct organic rich beds in the form of shale. To the west of the site, coarser-textured glaciolacustrine deposits are present in the form of sand, gravel and basinal and foreshore deposits (MNDM, 2021).

2.3 Bedrock Geology

Regional bedrock consists of the Georgian Bay Formation (OGS, 2017). The Georgian Bay Formation ranges from 125 m to 200 m in thickness across Southern Ontario and is distinguished by its interbedded grey-green to dark grey shale and fossiliferous calcareous siltstone to limestone (hard beds) (Armstrong and Dodge, 2007). The abundance and thickness of these hard beds generally decreases from north to south (Johnson et al., 1992). Additionally, secondary sedimentary structures such as ripple marks and gutter casts as well as traces of fossils can be found in the Georgian Bay Formation. The bedrock is estimated to be located at approximately 12 m below ground and is expected to be encountered during the borehole drilling program.

2.4 Drainage

The study area falls within the Lake Ontario Waterfront Watershed, which encompasses 72 linear kilometers of waterfront and falls under the jurisdiction of the Toronto and Region Conservation Authority (TRCA) (TRCA, 2021). Across this shoreline, nine watersheds (Etobicoke Creek, Mimico Creek, Humber River, Don River, Highland Creek, Rouge River, Duffins Creek, Petticoat Creek, and Carruthers Creek) all drain into Lake Ontario. This watershed is the only watershed under jurisdiction by the TRCA that is a lake watershed, draining into Lake Ontario. The Lake Ontario Waterfront watershed drains both the lower Humber and Don and drains a combined area of approximately 105 km². The watershed is 91% urban land cover with the remaining 9% being natural cover (TRCA, 2021). Significant features of the watershed include the Scarborough Bluffs, Toronto Islands, and Frenchman's Bay further east.

2.5 Hydrostratigraphy

Hydrostratigraphic units can be subdivided into three distinct groups based on their ability to allow groundwater movement. An aquifer is defined as a layer of soil that is permeable enough to permit a usable supply of water to be extracted. An aquitard is a layer of soil that inhibits groundwater movement due to its low permeability. Groundwater flow within the study area is influenced by three (3) key hydrostratigraphic units:

A surficial *unconfined fill aquifer* was identified on-site, and consists of damp and fairly loose intermixed silty sand, silty clay and trace gravel and trace cinder. Some areas of clay lumps and wood fragments were also encountered. The permeability of fill units can be highly variable depending upon the materials used for fill. This unit ranges from 1.5 - 4.1 m in thickness across the site and is variably saturated.

The *silty clay aquitard* is composed primarily of Sunnybrook Drift sediments, with interbedded lake deposits, and is the native soil layer. The layer is fissured with oxidation present on some faces and faint layering is also present in some soil samples. A few organic inclusions were observed at some locations on site (Alston Geotechnical Consultants, 2021). It is expected that the hydraulic conductivity for the silty clay aquitard is in the range of 10⁻⁷ m/s or lower.

The *weathered shale* is located below a depth of about 10.5 m. The upper subunit of this stratum exhibits characteristics comparable to that of a hard shaly clay. As the depth increases the unit the characteristic transitions to a clayey shale material. In total, this unit ranges from 2 - 4 m in thickness within the boreholes drilled across the site. It is expected hydraulic conductivity for the weathered shale is highly variable with the upper unit potentially acting as a thin aquifer, and the competent shale acting as an aquitard.

3. Hydrogeological Investigations

3.1 **Previous Borehole Drilling and Monitoring Well Installations**

A combined geotechnical and environmental site assessment (ESA) was conducted by Watters Environmental Group and Alston Geotechnical Consultants Inc. on June 21 and 22nd, 2021, which included

the drilling of boreholes and installation of groundwater monitoring wells. Standard penetration tests were carried out at frequent intervals of depth throughout borehole drilling to take representative soil samples. Observations of groundwater conditions were made and monitoring wells were installed in five (5) boreholes ranging in depth from 4.36 to 12.18 below ground surface (mbgs) for the monitoring of stabilized groundwater levels at the site. Corresponding borehole locations are provided on **Figure 1** and borehole logs are presented in **Appendix A**.

An additional borehole was advanced by Watters Environmental Group Inc. on July 9th, 2021 to complete BH105 and ranged in depth from 6.0 to 7.0 mbgs. A CME 75 drill rig with split spoon sampling and hollow stem augers was used to drill the boreholes. Details of the monitoring well installations are provided in **Table 1**.

Borehole/MW ID	Depth (mbgs)	Top of Screen (mbgs)	Bottom of Screen (mbgs)	Screened Geology	Hydrostratigraphic Unit
MW21-101	6.71	2.50	5.55	Silty Clay	Silty Clay
BH102	5.18	-	-	-	Fill/Silty Clay
MW21-103	12.25	9.20	12.25	Silty Clay/Shale	Weathered Shale/Silty Clay
MW21-104	12.25	6.05	9.10	Silty Clay	Silty Clay
BH105	3.81	-	-	-	Fill
MW21-106-s	4.35	1.25	4.30	Silty Clay/Loose Sand	Fill
MW21-106-d	9.75	6.15	9.20	Silty Clay	Silty Clay

Table 1. Borehole and Monitoring Well Details

3.1.1 Site Specific Geology

The results of the geotechnical borehole drilling investigations were generally consistent with the regional OGS mapping (**Figure 3**). Alston Geotechnical Consultants Inc. reviewed the soil samples and borehole logs and described the soil profile of the site as follows:

Fill Materials. The site is overlain with a layer of sand fill material which extends to depths ranging from about 1.5 m to 4 m at the borehole locations. This layer is generally in a compact condition with standard penetration tests carried out measuring N-values of 1 to 34 blows/300 mm. This can be attributed to compaction due to pavement construction. Below a depth of 0.5 m N-values range from 1 to 7 blows/300 mm, indicating loose to very loose compaction.

Silty Clay. A native soil layer of silty clay material which includes a trace of sand and gravel underlies the surficial fill soil layer. The layer also is also fissured with oxidation and colouration exhibited on some fissure faces. Standard Penetration tests carried out in this deposit measured N-values ranging from 3 to 27 blows/300 mm which indicates that it is of a soft to firm up to very stiff consistency. In situ vane tests were carried out to measure soil shear strength which was found to be more than 100 kPa.

These results indicate variable shear resistance and compressibility characteristics within the stratum across the site. The soil deposit extends to a depth of about 10.5 m.

Weathered Shale. The silty clay is, in turn, underlain by a local shale bedrock stratum. The stratum is split up into upper and lower subunits. The upper subunit exhibits characteristics close to that of a hard shaley clay while the lower subunit exhibits characteristics most similar to that of a clayey shale material.

3.2 Groundwater Levels and Flow

Stabilized groundwater levels were measured by Palmer personnel on July 2nd, July 6th, July 29th, August 26th and, November 4th 2021, they are presented in **Table 2**.

Water levels were measured using a water level tape and recorded to the nearest centimetre. Stabilized water levels in the shallow well (MW21-106s) ranged from 3.19 to 3.5 mbgs. Within the deep wells (MW21-103, MW21-104, and MW21-106-d) the depth to groundwater ranged from 3.20 to 9.63 over the course of the monitoring period. It should be noted that well MW21-101 exhibited dry conditions during both monitoring events in early July, but groundwater was found later July 29th and into the fall months. This follows a typical seasonal trend indicative of lower water levels conditions in the late summer followed by higher water level conditions starting in the fall.

	Dowth		Water Level				
MW ID	(mbgs)	Unit	July 2nd, 2021	July 6th, 2021	July 29th, 2021	August 26th, 2021	November 3rd, 2021
MW21- 101	6.11	mbgs	Dry at 6.11	Dry at 6.11	5.40	4.73	3.68
MW21- 103	12.18	mbgs	3.81	9.63	4.95	4.03	3.60
MW21- 104	9.24	mbgs	4.33	3.60	3.40	3.62	3.35
MW21- 106-s	4.36	mbgs	3.46	3.46	3.34	3.45	3.19
MW21- 106-d	9.18	mbgs	3.46	3.47	3.35	3.51	3.20

Table 2. Groundwater Levels

3.3 Hydraulic Conductivity

Monitoring wells were purged dry on July 2nd, 2021 by Palmer Staff prior to hydraulic conductivity testing. Hydraulic conductivity testing was then performed on all installed wells on site barring MW21-101 (which was dry) on July 6th, 2021, using a combination of rising head (bail) test and falling head (slug) test methods

to determine the hydraulic conductivity (K) of the screened, saturated geological material. The results are presented on **Table 3**.

For rising head tests, one bailer of water was removed from the wells and the rate of recovery was measured as the water level returned to static. For falling head tests, a slug of known volume was placed in the well and the rate of recovery was measured as the water level returned to static. Measurements were recorded using a datalogger which was set to record water levels at one-second intervals. Additionally, manual water level measurements were collected during the test in order to gauge recovery. The test was terminated once either 80% recovery had been attained or 30 minutes had elapsed. Hydraulic conductivity (K) values were calculated from the displacement-time data using the Bouwer and Rice (1976) Method as implemented in AQTESOLV ver. 4.5, HYDROSolve Inc. (**Appendix B**). The hydraulic conductivity of the saturated, screened soils at that location.

A hydraulic conductivity value of 7.3 x 10^{-6} m/s for the unconfined fill unit and a hydraulic conductivity of 3.1 x 10^{-7} m/s for the confined silty clay unit (geometric mean each unit) were used in dewatering calculations. MW21-103 was screened in both the silty clay and underlying weathered shale (approximately half in each). The hydraulic conductivity of the screened interval in this well was found to be 8.9 x 10^{-7} m/s. However, the static water level in this well, considered to be representative of conditions in the weathered shale, is below the depth of dewatering. Hence, dewatering calculations are not provided for the weathered shale and it is not necessary to address potential basal heave from this unit.

Please note that due to the low permeability of the silty clay and shale units, it cannot be confirmed at this time if the water levels in the wells screened in this unit were static during the July 6th hydraulic testing. In particular, the water level at MW21-103 rose approximately 5 m between the July 6, 2021 and the July 29, 2021 monitoring events, suggesting that this well was not at static for hydraulic testing. Additional discussion regarding groundwater levels and the implications on the hydraulic conductivity values can be provided during subsequent submissions.

BH ID	Test Type	Solution	K (m/s)	Geometric Mean K (m/s)	Screened Stratigraphy
MW103	Rising Head	Bouwer-Rice Confined	8.8 x 10 ⁻⁷	—	Silty Clay/ Weathered Shale
MW104	Falling Head	Bouwer-Rice Confined	7.5 x 10 ⁻⁷	_	Silty Clay
MW106-d	Falling Head Rising Head	Bouwer-Rice Confined	6.9 x 10 ⁻⁸ 1.8 x 10 ⁻⁷	1.0 x 10 ⁻⁷	Silty Clay
MW106-s	Falling Head Falling Head x2	Bouwer-Rice Unconfined	7.3 x 10 ⁻⁶ 1.6 x 10 ⁻⁶	4.0 x 10 ⁻⁶	Fill Materials

Table 3. Hydraulic Conductivity Summary

3.4 Groundwater Chemistry

A groundwater chemistry sample was collected on July 02, 2021 from MW21-106-s and analyzed at ALS Environmental, a CALA-accredited laboratory, for parameters included in the City of Toronto's sewer use by-law. A summary table of the groundwater analysis exceedances is presented in **Table 4** and a copy of the Certificate of Analysis is provided in **Appendix D**.

The sample from MW21-106-s exceeded City of Toronto Storm Sewer Use Limits, but not the corresponding Sanitary Sewer Use Limits, for Total Suspended Solids (TSS), Zinc, Manganese and Mercury. It is expected that the concentrations of the parameters that exceed Storm Sewer Use Limits can be lowered by lowering TSS, e.g., by using a settling tank and/or filters. Alternately, the sample did meet the Limits applicable for discharge to the sanitary sewer system.

Parameter	Detection Limit	City of Toronto Sanitary Sewer Use Limit	City of Toronto Storm Sewer Use Limit	Units	Sample Concentration MW21-106-s
Total Suspended Solids	3.0	350	15	mg/L	160
Zinc, Total	0.30	2	0.04	mg/L	0.063
Manganese, Total	0.0050	5	0.05	mg/L	1.11
Mercury, Total	0.010	0.01	0.0004	mg/L	0.00162

Table 4. Groundwater Quality Exceedances

4. Hydrogeological Assessment

4.1 Short Term Construction Dewatering

It is understood that the two levels of basement will extend approximately 6 mbgs with the foundations extending another 1 m. Dewatering will extend 1 m below base of excavation (this will increase to 1.2 m for frost protection if the planned basement is replaced with underground parking) resulting in a dewatering target depth of 8 mbgs. This is above the static level in the weathered shale (**Table 2**) but dewatering of the unconfined fill and a portion of the silty clay unit will be required.

It is assumed that the proposed building will occupy the entire footprint of 828 – 838 Richmond Street West, approximately 24 x 30 m. An allowance of 1 m has been added to the July 2nd, 2021 groundwater elevation in the shallow water table and clay units to account for seasonal variation as observed by the updated water level data from November 2021. The maximum thickness of the fill unit (4.1 m) is used in the dewatering calculations. The adjustment for precipitation is a nominal two year storm (25 mm in 24 hours) over the footprint of the proposed building.

It should be noted that the highest dewatering flows for the larger excavations are anticipated at the beginning of the dewatering process to achieve the target drawdown levels. After groundwater levels have

been lowered to the target elevation, the dewatering flows are anticipated to be lower when maintaining the groundwater level at the target elevation during steady-state dewatering flow conditions.

A dewatering rate estimate (Q) for the rectangular/near-square excavation was calculated using the following equation from Powers et. al (2007) for an equivalent well in an unconfined aquifer:

Unconfined Aquifer,
$$Q_{unconfined} = \frac{\pi K (H^2 - h^2)}{\ln (\frac{Ro}{r_e})} m^3/s$$

Where

	K	=	hydraulic conductivity (m/s) – estimated from SWRT and/or grain size distribution data
	Н	=	saturated thickness (m)
	h	=	saturated thickness after dewatering (m)
	Ro	=	radius of influence (only valid if $\ln[R_o/r_e] > 1.5$) estimated using (i) the Sichardt (1930) Approximation: $R_0 = 3000 * (H-h) * \sqrt{K}$ (m) or
			(ii) Driscoll (1986) iterative solution: $Q = K * (H^2 - h^2)/0.733 * (log[R_0/r_{el}]) (m)$ or (iii) Recharge-based estimate from Marinelli & Niccoli (2000).
	r _e	=	equivalent well radius estimated by: $r_e = \sqrt{\frac{a^2}{\pi}}$ (m)
	X L	= =	Where $a =$ trench width (m) trench length (m) line source distance (m) L = Ro/2
Confine	ed Aquife	er,	$Q_{confined} = \frac{2\pi K b(H-h)}{\ln \left(\frac{Ro}{r_e}\right)} \qquad m^3/s$
Where			
	К	=	hydraulic conductivity (m/s) – estimated from SWRT and/or grain size distribution
	н	=	saturated thickness (m)
	h	=	saturated thickness after dewatering (m)
	Ro	=	radius of influence (only valid if $\ln[R_o/r_e] > 1.5$) estimated using
			(i) the Sichardt (1930) Approximation:
			$R_0 = 3000 * (H-h) * \sqrt{K} (m)$
			Or (ii) Deissell (4000) iterative activitient
			(II) Driscoli (1986) Iterative solution: $\Omega = K * (H\Omega_2 + h\Omega_2)/0.733 * (log[R/r_1] (m))$
			$Q = K (F^2 - F^2)/0.733 (FOG[N_0/e]) (ff)$
			(iii) Recharge-based estimate from Marinelli & Niccoli (2000).
	r _e	=	equivalent well radius estimated by:

November 04, 2021 2001512 - Hydrogeological Investigation 822, 828 and 834 to 838 Richmond Street West

Palmer...

Hydrogeological Investigation – Proposed Development at 822, 828 and 834 to 838 Richmond Street West, Toronto, Ontario

$$r_e = \sqrt{\frac{a^2}{\pi}}$$
 (m) Where $a =$ trench width (m)

A safety factor of 1.5x is applied to all calculated dewatering flow rates.

Tables 5 and **6** present a summary of Palmer's findings and the estimated dewatering rates for the proposed excavations.

Palmer

Hydrogeological Investigation – Proposed Development at 822, 828 and 834 to 838 Richmond Street West, Toronto, Ontario

Dewatering Parameter	Symbol	Unit	Values
Excavation length	Х	[m]	24
Excavation width	А	[m]	30
Hydraulic Conductivity	K	[m/s]	7.3x10 ⁻⁶
Saturated thickness	Н	[m]	1.40
Dewatered saturated thickness	h	[m]	0
Radius of influence (Marinelli and Niccoli used)	R₀	[m]	73.8
Equivalent Well Radius	r _e	[m]	15.1
Dewatering rate	Qdw	[L/day]	2,450
Total Dewatering Rate (With Safety Factor and Precipitation Allowance)	Q	[L/day]	21,675

Table 5. Dewatering Rate Estimate, Unconfined Fill

Table 6. Dewatering Rate Estimate, Confined Silty Clay

Dewatering Parameter	Symbol	Unit	Values
Excavation length	х	[m]	24
Excavation width	а	[m]	30
Hydraulic Conductivity	K	[m/s]	3.1x10 ⁻⁷
Aquifer thickness	b	[m]	6.57
Initial water column height	Н	[m]	8.07
Dewatered saturated thickness	h	[m]	2.67
Radius of influence (Driscoll solution)	R ₀	[m]	400
Equivalent Well Radius	ľe	[m]	15.1
Dewatering rate	Q _{dw}	[L/day]	19,270
Total Dewatering Rate (With Safety Factor)	Q	[L/day]	28,905

Based on the above calculations, if two (2) levels of underground basement are constructed at the site, the combined flow rate is estimated to be 50,580 L/day. A Category 3 PTTW would not be required at this rate but registration on the EASR would be. This volume is expected to be manageable with the use of sump pumps from the base of the excavation.

4.2 Source Water Protection

The Source Water Protection Plan identifies three main regulatory factors under the *Clean Water Act* (2006) relating to local hydrogeology to consider for site development: Significant Groundwater Recharge Areas (SGRAs), Highly Vulnerable Aquifers (HVAs), and Wellhead Protection Areas (WHPAs). This site is encompassed within the Toronto and Region Source Protection Area. Based on available MECP Source Protection Information mapping, the proposed development is within an HVA (vulnerability score of 6) but not within a SGRA or a WHPA zone (**Figure 4**). An HVA is an aquifer that is particularly susceptible to contamination because of its location near the ground's surface or where the types of materials in the ground around it are expected to be permeable.

5. Hydrogeological Construction Considerations

5.1 Short Term Construction Dewatering

Short-term construction dewatering is required for the installation of the building foundation, the two levels of basement. It is understood that short-term construction-related dewatering will be managed through obtaining a temporary discharge permit from the City of Toronto. If required, long-term dewatering will require a long-term discharge permit from the City of Toronto.

Under MECP requirements, registration on the Environmental and Site Activity Registry (EASR) is required when dewatering is greater than 50,000 L/day and less than 400,000 L/day. A PTTW is required when dewatering is expected to be greater than 400,000 L/day. Short-term dewatering volumes were estimated at 50,580 L/day. As this flow rate exceeds 50,000 L/day but is less than 400,000 L/day, registration on the EASR is recommended.

5.2 Long Term Foundation Dewatering

It is assumed that any protrusions extending below the underside of the lowest floor level, e.g., elevator pits, will be waterproofed at the time of construction to avoid any permanent dewatering requirements specific to these feature(s). Long-term dewatering will then have two requirements: (i) storm drainage and (ii) groundwater flow into the weeping tile system.

With respect to stormwater flow, it is assumed that a nominal two year storm (25 mm of rain in 24 hours) will penetrate a 1 m buffer around the building (i.e., above the weeping tile excavation). As the site has a perimeter of approximately 150 m, this equates to 3,750 L/day. Leakage from the fill would be consistent with the short-term dewatering requirements (3,675 L/day). Dewatering in the silty clay would be to the base of foundations, 1 m less than under short-term dewatering. The resulting flow rate (silty clay only) is 25,740 L/day with a safety factor of 1.5x. The combined total is 33,165 L/day. As the combined total is less than 50,000 L/day, a Category 3 PTTW will not be required. It will be necessary to obtain a long-term sewer discharge agreement with the City of Toronto for permanent discharge unless the basement level is fully waterproofed.

5.3 Discharge and Monitoring Plan

As groundwater control is required, a preliminary discharge monitoring plan is provided. Although the method of active dewatering or the means of groundwater management by the Contractor are not precisely known, some guidance is provided to assist in the review of this document. Based upon the predicted groundwater seepage rates, active dewatering methods will be required. The Contractor will be required to record daily rates and volumes during dewatering and to regularly test water quality to ensure that the discharge water meets applicable quality criteria.

Dewatering discharge can be directed to the local sewage works pending approval from Toronto Water. Water quality samples must be collected by the Contractor prior to discharging to confirm groundwater quality, and to ensure that dewatering discharge meets the applicable City of Toronto sewer use by-law criteria. Approval from the City of Toronto is required prior to discharging water to municipal storm or sanitary sewers, and it should be noted that discharge to sewers may not be permitted due to capacity issues.

Dewatering rates from **Tables 5** and **6** were estimated using field measured hydraulic conductivity. The following monitoring program (**Table 7**) is provided to support an EASR application, and to summarize the recommended hydrogeological monitoring to be undertaken by the Contractor.

Period	Location	Parameters	Frequency	Trigger for Mitigation	Mitigation Measures	Contingency Plan			
Groundwater (Quality		-	-		-			
Pre- Construction	Existing Monitoring Well or sump	A complete screening for the City of Toronto Sanitary/Stor m Sewer Discharge Criteria, depending upon the sewer type selected for discharge.	Once to obtain a City of Toronto Sewer Discharge Permit.	Exceedance of Storm Sewer or Sanitary Sewer Discharge Criteria	Install additional settling tanks or filtering/ treatment equipment to reduce groundwater chemical concentrations to within applicable limits.	If water does not meet Storm Sewer standards at the point of discharge, water shall be directed to the Sanitary Sewer (if approved) or the water will be trucked off-site for treatment and disposal			
During Construction	Within excavation	Turbidity and TSS. Visual inspection for hydrocarbon sheen.	Daily measureme nts, or measureme nts immediately prior to discharge	Exceedance of Storm Sewer or Sanitary Sewer Discharge Criteria. Hydrocarbon sheen observed or exceedance for VOCs. Turbidity at 8 NTU or 25 mg/L TSS for Storm Sewer Discharge, and 350 mg/L for Sanitary Sewer Discharge.	Install additional settling tanks or filtering/ treatment equipment to reduce groundwater chemical concentrations to within applicable limits.	If water does not meet Storm Sewer standards at the point of discharge, water shall be directed to the Sanitary Sewer (if approved) or the water will be trucked off-site for treatment and disposal			
Prior to Project Completion	Each discharge point	Confirmation that the sewer is free of construction related sediment.	Once following construction at each open cut section.	Accumulation of construction related sediment is observed.	Sediment will be removed to the satisfaction of the City of Toronto.	None.			
Ground Settle	ment								
No around settl	ement moni	toring is recomm	handed based	on the results of the h	vdrogeological study A	geotechnical engineer			

Table 7. Hydrogeological Monitoring Plan

No ground settlement monitoring is recommended based on the results of the hydrogeological study. A geotechnical engineer should be retained to confirm ground settlement monitoring needs.

November 04, 2021

2001512 - Hydrogeological Investigation 822, 828 and 834 to 838 Richmond Street West

Period	Location	Parameters	Frequency	Trigger for Mitigation	Mitigation Measures	Contingency Plan				
Groundwater Level and Quality										
No groundwater level or groundwater quality monitoring is recommended for this project.										
Natural Enviro	onment									
No natural envi located 1.2 km	No natural environmental monitoring is recommended. The nearest natural feature to the project is a Natural Heritage System located 1.2 km at the Lake Ontario shoreline.									

5.4 Impact Assessment

5.4.1 Natural Environment

No adverse impacts on the natural environment are expected as a result of this project's dewatering. No natural environment features are located within the radius of influence of dewatering. The nearest natural feature to the project is a natural heritage system located 1.2 km at the Lake Ontario shoreline.

5.4.2 Private Water Wells

Local Water Well Records (WWRs) obtained from the Ministry of the Environment, Conservation and Parks (MECP) show that there are approximately thirty wells within a 0.5 km radius of the site. These wells document static water levels of approximately 4.0-5.0 mbgs, in-accordance with depths to water measured by Palmer staff on-site. The nearest Permit to Take Water (PTTW) on record with the MECP is for a location approximately 1.1 km southeast of the site at a permitted maximum rate of 819,000 L/day. Other sites in close proximity to the site where dewatering has occurred are registered on the EASR, and therefore means that dewatering rates were 400,000 L/day or less.

It is not expected that private water wells will be impacted as a result of dewatering activities as no active private groundwater users were identified within a 500 m radius of the development site.

5.4.3 Ground Settlement

The majority of the dewatering will occur in the consolidated silty clay that has a low potential for ground settlement. A geotechnical engineer should complete a comprehensive groundwater settlement assessment based on the final design drawings.

5.5 Monitoring and Supplemental EASR Information

The contractor will be responsible for recording the daily water taking volumes and rates and reporting them to the MECP's online Water Taking and Reporting (WTRS) system. It is the responsibility of the Contractor to ensure that the discharge water meets applicable standards for clarity or TSS and City of Toronto Sewer Discharge Criteria. The Contractor will conduct a daily visual inspection of the discharge and take daily TSS and turbidity measurements to ensure dewatering discharge meets the applicable discharge criteria.

To support a project registration on EASR for construction dewatering for the proposed development, the following EASR-specific supplemental information is provided in **Table 8**.

Required EASR	Supplemental Hydrogeological Information to	Actional Recommendations
Information	Support EASR Requirements	Actions/ Recommendations
Address the potential	Changes in porewater pressure from construction	From a hydrogeological perspective, a
impact soil settlement	dewatering has the potential to induce settlement of	soil settlement monitoring program is not
as a result of the water	unconsolidated soils within the dewatering radius of	recommended. A geotechnical
taking.	influence. The geology of the site consists of sand fill	engineering should be retained to
	over silty clay overtop silt and sand. These units are	confirm.
	consolidated and are not prone to settlement.	
The method of transfer	Based on Source Water Protection Mapping, the 822-838	The project site is not within any WHPA-
or discharge shall not	Richmond Street West development project is not located	A radius. Discharge is planned to be
include discharge to	within a Wellhead Protection Area-A (WHPA-A).	directed to the City of Toronto Storm or
land that is within an		Sanitary Sewer Systems.
area that is part of a		
wellhead protection		
area and that is		
identified as "WHPA-		
A" in a source		
protection plan		
approved by the		
Minister under		
the Clean Water Act,		
2006.		
With respect to any	No petroleum hydrocarbon film or sheen was observed	The Contractor shall make observations
ground water, storm	during drilling at the site. If a petroleum hydrocarbon film	of the dewatering discharge to confirm
water, or both that is	or sheen is observed during construction, the likely	the absence of a hydrocarbon sheen. In
discharged to land or	source is from the Contractor and not from groundwater	addition, the Contractor must have a
storm sewer, there	or stormwater.	spills response plan in place to address
shall be no visible		potential hydrocarbon spills or leaks.
petroleum	In the opinion of QP, the discharge of the groundwater,	Should a hydrocarbon film or sheen be
hydrocarbon film or	storm water or both will not cause adverse effect to the	observed, discharge of water must
sheen present in the	environment.	immediately stop and contaminated
water, storm water or		water should be trucked off-site to a
both.		proper waste disposal facility.
On or before March	This report has identified that the Contractor will be	The Contractor is responsible for
31 st of each year, the	responsible for *recording the daily water taking volumes	recording the daily water taking volumes
person engaging in the	and rates and report them to the MECP's online Water	and rates and reporting them to the
[water taking] activity	Taking and Reporting System (WTRS). This must be	MECP WTRS before March 31 st of each
shall provide the	completed before March 31 st of each calendar year.	calendar year.
[MECP] Director with a		
report, in a form and	If a *complaint is received with respect to the taking or	
manner approved by	discharging of ground water, storm water or both and the	
the Director, setting	complaint relates to the natural environment, the Ministry	

Table 8. Supplemental Hydrogeological EASR Information

November 04, 2021 2001512 - Hydrogeological Investigation 822, 828 and 834 to 838 Richmond Street West

Required EASR	Supplemental Hydrogeological Information to	Actions/ Recommendations
Information	Support EASR Requirements	Actions/ Recommendations
out the volume of	shall be notified of the complaint immediately after the	
ground water taken	complaint is received and that all spills of pollutants (e.g.,	
daily in the previous	oil, chemicals) or Environmental Complaints (e.g.,	
calendar year.	dewatering) are to be reported to the Spills Action Centre	
	by calling 416-325-3000, 1-800-268-6060 (toll-free).	
A summary of the	Report Author Professional Qualifications:	N/A
qualifications and	Jason Cole, M.Sc., P.Geo. is a Senior Hydrogeologist for	
experience of the	Palmer in Toronto, and meets the qualifications set out in	
person who prepared	O.Reg. 63/16. Jason's professional work focuses on	
the water taking plan.	conducting hydrogeological investigations for design and	
	permitting of infrastructure, mining, aggregate extraction	
	and land development projects. Jason specializes in	
	conducting regional and feature specific water budget	
	analyses, dewatering and construction groundwater	
	management, hydrogeological studies to support PTTW	
	applications, provincial and federal Environmental	
	Assessments, and Environmental Impact Studies. Jason	
	has successfully obtained more than 40 PTTWs and	
	EASR Registrations for clients such as MTO, TTC, City	
	of Markham, Halton Region, Peel Region, City of	
	Toronto, City of Kitchener, and Kimberly-Clark Inc.	
An identification of the	The estimated construction dewatering rate is	Should an extreme weather event occur
method of transfer or	conservative enough to take into account a 25 mm storm	or be imminent, the following actions
discharge referred to	event. O.Reg. 63/16 stipulates that the water taking must	should occur:
in paragraph 4 of	be less than 400,000 L/day under normal conditions,	 All discharge activities to the
subsection (1) that is	which would not include extreme weather events and	environment must temporarily stop.
to be employed in the	heavy rainfalls such as the 100 yr storm. A discharge	 Equipment shall be moved out of the
event of a 100 year	management plan should be established to provide	excavation to prevent or limit the
storm event.	direction to the Contractor should an extreme weather	potential for contamination.
	event occur during the construction period.	 If flooding occurs within the
		excavation, the water quality shall be
		assessed against City of Toronto
		Discharge Criteria (i.e., Sewer Use By-
		Law) prior to discharging water to the
		sewage works.
		 Should the water quality not meet
		applicable discharge criteria, the water
		remaining in the excavation after the
		event that caused the flooding shall be
		pumped and collected in a suitable
		containment device for treatment, and
		not discharged to the environment.

Required EASR	Supplemental Hydrogeological Information to	Actions/ Pocommondations
Information	Support EASR Requirements	Actions/ Recommendations
A statement by the	Temperature mitigation was considered in the discharge	Discharge groundwater into sanitary or
person who prepared	plan for the 906 Yonge Street development project.	stormwater sewer system.
the [dewatering] plan	Groundwater temperature is expected to average	
that the temperature of	approximately 10°C over the year. The sanitary or storm	
the ground water or	water sewer system is the proposed discharge location.	
storm water to be		
discharged was		
considered in		
determining the		
method of transfer or		
discharge referred to		
in paragraph 3 or 4.		

6. Summary and Conclusions

Based on the results of our Hydrogeological Investigation for a proposed development at 822, 828 and 834 to 822 Richmond Street West, Toronto, Ontario, the following summary of conclusions and recommendations are presented:

- The site is approximately 0.117 ha in area and proposed to be redeveloped into a 6 storey development with two levels of underground parking. Currently, the site is occupied by several commercial spaces and a school as well as a parking area and is adjacent to retail businesses and residential apartment buildings.
- The site is generally underlain by a 1.5 to 4.1 m loose intermixed silty sand fill layer, followed by silty clay and weathered shale of the Georgian Bay Formation extending to a depth of approximately 14 mbgs.
- Based on grain size distribution analyses, the silty clay unit has a K-value of 1.4 x 10⁻⁹ m/s respectively. A recovery test was conducted on MW103 with the K-value found to be 9.7 x 10⁻⁷ m/s which is representative of the combined screened geological unit. The K-value calculated using grain size distribution analysis is approximately 1-2 order of magnitude lower than the results of the recovery test. This is anticipated to result from the inability of grain size-based methods to allow for the effects of soil structure, e.g., layering.
- A groundwater sample was collected from MW21-106-s on July 2nd, 2021 and analyzed for comparison against the City of Toronto Storm and Sanitary Sewer Use By-Law criteria. The sample exceeded City of Toronto Storm Sewer Use criteria for Total Suspended Solids (TSS), Zinc, Manganese and Mercury. No exceedances for the City of Toronto Sanitary Sewer Criteria were measured.
- Source water protection mapping indicates that the site is not located within a SGRA or WHPA but is located over an HVA.
- The nearest natural feature to the project is the natural heritage site near Ontario Place which is located approximately 1.2 km to the southwest of the site.
- No private groundwater users were identified within a 500 m radius of the development site.
- Short-term construction dewatering requirements for the installation of foundations and two levels
 of underground parking are estimated at 50,580 L/day. Registration on the EASR is recommended
 for this project. In addition, as the dewatering is scheduled to only be up to 7 m in depth, there is
 low potential for basal heave from the weather shale unit. Since the majority of dewatering will
 occur in the consolidated silty clay, there is low potential for ground settlement. A geotechnical
 engineer should complete a comprehensive groundwater settlement assessment based on the final
 design drawings.

- Long-term dewatering calculations consider storm drainage (nominal two-year storm) and groundwater flow into a weeping tile system. These rates were estimated at 3,750 and 3,675 L/day, respectively. The dewatering from the silty clay layer would be 25,740 L/day with a 1.5x safety factor. As the combined total is less than 50,000 L/day, a Category 3 PTTW will not be required.
- A sewer discharge agreement with the City of Toronto will be required for short- and long-term discharge if dewatering volumes are directed to the City of Toronto Storm or Sanitary Sewer systems.

7. Statement of Limitations

The extent of this study was limited to the specific scope of work for which we were retained and that is described in this report. Palmer has assumed that the information provided by the client or any secondary sources of information are factual and accurate. Palmer accepts no responsibility for any deficiency, misstatement or inaccuracy contained in this report as a result of omissions, misinterpretations or negligent acts from relied upon data. Judgment has been used by Palmer in the interpretation of the information provided but subsurface physical and chemical characteristics may differ from regional scale geology mapping and vary between or beyond well/borehole locations given the inherent variability in geological conditions.

Palmer is not a guarantor of the geological or groundwater conditions at the subject site, but warrants only that its work was undertaken and its report prepared in a manner consistent with the level of skill and diligence normally exercised by competent geoscience professionals practicing in the Province of Ontario. Our findings, conclusions and recommendations should be evaluated in light of the limited scope of our work.

The information and opinions expressed in the Report are for the sole benefit of the Client. NO OTHER PARTY MAY USE OR RELY UPON THE REPORT OR ANY PORTION THEREOF WITHOUT PALMER'S WRITTEN CONSENT AND SUCH USE SHALL BE ON SUCH TERMS AND CONDITIONS AS PALMER MAY EXPRESSLY APPROVE. Ownership in and copyright for the contents of the Report belongs to Palmer. Any use which a third party makes of the Report is the sole responsibility of such third party. Palmer accepts no responsibility whatsoever for damages suffered by any third party resulting from use of the Report without Palmer's express written permission. Should the project design change following issuance of the Report, Palmer must be provided the opportunity to review and revise the Report in light of such alteration or variation.

8. Signatures

Acknowledgment of the practice of geoscience: The report of findings for Palmer's initial investigation of the site, on which this report is based, was initially prepared and reviewed by Stephen Hodgson, P.Geo., QP_{ESA}. Mr. Hodgson is no longer with Palmer.

This report was reviewed and approved by the undersigned:

Reviewed and Approved By:

Jason Cole, M.Sc., P.Geo. Vice President, Principal Hydrogeologist

9. References

- Alston Geotechnical Consultants Inc. Terrapex, July, 2021. Grain size distribution data for 822, 828 and 834 to 838 Richmond Street West, Toronto, Ontario.
- Alston Geotechnical Consultants Inc., July 12, 2021 .

Technical Memorandum: Preliminary Geotechnical Review, 822, 828 and 834 to 838 Richmond Street West

Armstrong, D.K. and J.E.P. Dodge, 2007. Paleozoic Geology of Southern Ontario. 2007. Project Summary and Technical Document.

Chapman, L.J. and D.F. Putman, 1984. Physiography of Southern Ontario. 1973. Special Volume No. 2. Toronto, Ontario. Ontario Geological Survey. 270 p.

Johnson et al., 1992 Paleozoic and Mesozoic Geology of Ontario. 1992

Ministry of the Environment and Energy (MOEE), 1995: Technical Information Requirements of Land Development Applications.

- Ontario Geological Survey, 2017. Quaternary Geology.
- Ontario Geological Survey, 2017. Surficial Geology.

Watters Environmental Group Inc., 2021. Site Plan and Borehole Logs for 822, 828 and 834 to 838 Richmond Street West, Toronto, Ontario.

Appendix A

Site Plan and Borehole Logs (Watters, 2021)

9135 Keele Street, Unit A1 Concord, Ontario L4K 0J4 www.wattersenvironmental.com 416-361-2407 Project No.: 21-0082.03Client: CommunityLocation: 822,828, 834 & 838 Richmond St. W., Toronto, ONProject Manager: JRTotal Depth: 6.71 mLogged By: TA & AWGround Elevation: 0

SUBSURFACE PROFILE				SAMPLE											
Depth	Symbol	Description		Depth/Elev. (m)	Number	Type	N-Value	Recovery %	T.O.V. CGD/PID	Lab Submitted	Moisture (%)	Well Completion Data			
ft m		Ground Surface		0.00											
		60 mm Asphalt			1	SS	9	30	0,0	x		concrete			Casing
4		damp to moist silt, sand, gravel, cinder brick, silty clay FILL			2	SS	5	30	0,0			C			Steel (
6			loose very loose		3	SS	3	30	0,0			Bent			
8-				0.00	10	99	1	50	0.0	-					
				-2.60	40	00			0,0	-					
		very soft to soft grey SILTY CLAY, organic inclusions			4D	33		-	0,0	-					
		SILTY CLAY		-3.51	5	SS	3	100	0,0						Ĩ
		trace sand, trace gravel						_		1			=		
14		blocky structure brown to grey	stiff very		6	ss	18	100	0,0	x		Sand	= 		n Screen
16		brown with rust brown patches faintly layered	stiff		7	SS	19	100	0,0			23 Silica			Slot 3.05 r
18	###				8	SS	16	100	0,0			2018-08-			
20	H H H H	grey fissured with oxidized faces		-6.71	9	SS	13	100	0,0			N.I.			¥
24		End of Borehole													
Drilled Drill M Drill Da	Zo Hole Size: 200 mm Drill Method: Split Spoon Sampling and Hollow Augers Screening Tool: Eagle II Drill Date: 2021-06-21 Sheet: 1 of 1														

Borehole No: BH102

9135 Keele Street, Unit A1 Concord, Ontario L4K 0J4 www.wattersenvironmental.com 416-361-2407 Project No.: 21-0082.03Client: CommunityLocation: 822,828, 834 & 838 Richmond St. W., Toronto, ONProject Manager: JRTotal Depth: 5.18 mLogged By: TA & AWGround Elevation: 0

SUBSURFACE PROFILE					SAMPLE							
4400		Symbol	Description	Depth/Elev. (m)	Number	Type	N-Value	Recovery %	T.O.V. CGD/PID	Lab Submitted	Moisture (%)	Well Completion Data
ft 0 —	m — 0		Ground Surface	0.00								
2	-		60 mm Asphalt 60 mm Sandy Silt, some gravel		1	ss	34	50	0,0			
4	- - -		loose to very loose		2	ss	4	50	0,0	-		
6	- - - 2 -		silt, fine sand, trace gravel, trace cinder trace brick, frequent clay lumps FILL		3	ss	7	30	0,0			
8	-				4	ss	2	25	0,0	x		
10	- - -			-3.81	5	ss	1	25	0,0			
14	- 4 -	HH HH	SILTY CLAY, trace sand, trace gravel brownish grey brownfissured	-0.01	6	ss	5	100	0,0	-		
16	-		grey fissured faces firm to stiff very stiff	-5.18	7	ss	17	100	0,0	x		
18	-		End of Borehole									
20	— 6 - -											
22	-											
24	- - - 8											
28	-											
	Image: Second											
	riii D	ate: 202	21-06-21							She	et: 1 0	1.10

9135 Keele Street, Unit A1 Concord, Ontario L4K 0J4 www.wattersenvironmental.com 416-361-2407 Project No.: 21-0082.03Client: CommunityLocation: 822,828, 834 & 838 Richmond St. W., Toronto, ONProject Manager: JRTotal Depth: 12.25 mLogged By: TA & AWGround Elevation: 0

SUBSURFACE PROFILE				SAMPLE										
Depth	Symbol	Description	Depth/Elev. (m)	Number	Type	N-Value	Recovery %	T.O.V. CGD/PID	Lab Submitted	Moisture (%)	Well Completion Data			
ft m 0 → 0		Ground Surface	0.00											
2		70 mm Asphalt 70 mm Silty Sand some gravel		1	SS	12	75	0,0	x		Concrete			
4 1 1 1		loose to very loose		2	ss	7	100	0,0			Steel			
6 		damp to moist silt, sand, trace gravel, trace cinders trace brick, trace clay lumps and seams FILL		3	ss	3	40	0,0	-		<u>e</u>			
8				4	ss	4	100	0,0	-		Bentoni			
10				5	ss	2	75	0,0	-					
14	H H	grey mottled brown	-4.11	6	ss	4	75	0,0	x		021-06-22			
16		blocky structure firm to stiff brown fissured	-	7	ss	21	40	0,0			W.L. 2			
18	HH HH	SILTY CLAY		8	SS	20	100	0,0						
20 - 6		trace sand, trace gravel		0.4	~~	40	100	0.0						
			-6.40	9A 0P	33 99	10	100	0,0						
22-1-1-1 1-1-1-1 24-1-1-1		grey SILTY CLAY trace sand trace gravel faintly layered		90	33			0,0						
26 8				10	ss	4	100	0,0						
28-					sv	150 +kPa								
Drilled	Bv: Po	ntil Drilling. CME 75	•				•		Hol	e Size	: 200 mm			
Drill Method: Split Spoon Sampling and Hollow Augers							Scr	eening	g Tool: Eagle II					
Drill Date: 2021-06-21 Sheet: 1 of 2									of 2					

9135 Keele Street, Unit A1 Concord, Ontario L4K 0J4 www.wattersenvironmental.com 416-361-2407
 Project No.: 21-0082.03

 Client: Community

 Location: 822,828, 834 & 838 Richmond St. W., Toronto, ON

 Project Manager: JR
 Total Depth: 12.25 m

 Logged By: TA & AW
 Ground Elevation: 0

SUBSURFACE PROFILE					SAMPLE								
Depth	Symbol	Description		Depth/Elev. (m)	Number	Type	N-Value	Recovery %	T.O.V. CGD/PID	Lab Submitted	Moisture (%)	Well Completion Data	ı
$\begin{array}{c} 1 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 36 \\ 33 \\ 36 \\ 38 \\ 40 \\ 42 \\ 44 \\ 46 \\ 50 \\ 52 \\ 52 \\ 16 \\ 54 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 1$		 trace sand, trace gravel faintly layered Weatherd grey SHALY CLAY CLAYEY SHALE End of Borehole	firm very stiff	-10.67 -11.58 -12.25	11 12 13	SS SS	20 92 for 250 mm 50 for 50 mm	75	0,0				Slot 3.05 m Screen
Drilled Drill M Drill D	+ Image: Pontil Drilling, CME 75 Hole Size: 200 mm Drill Method: Split Spoon Sampling and Hollow Augers Screening Tool: Eagle II Drill Date: 2021-06-21 Sheet: 2 of 2												

9135 Keele Street, Unit A1 Concord, Ontario L4K 0J4 www.wattersenvironmental.com 416-361-2407 Project No.: 21-0082.03Client: CommunityLocation: 822,828, 834 & 838 Richmond St. W., Toronto, ONProject Manager: JRTotal Depth: 12.25 mLogged By: TA & AWGround Elevation: 0

SAMPLE SUBSURFACE PROFILE Depth/Elev. (m) T.O.V. CGD/PID Lab Submitted Well Completion Moisture (%) % Data Recovery Description Number **N-Value** Symbol Depth Type ft m 0 0.00 Ground Surface 0 70 mm Asphalt Concrete 70 mm Sand and Gravel Steel Casing SS 60 1 4 0.0 х 40 mm Asphalt 2 40 mm Sandy Silt and Gravel loose brown silty clay 2 SS 5 30 0,0 trace brick, trace gravel FILL 4 -1.52 brown veined grey blocky structure SS 100 6 3 4 0,0 2 firm -Bentonite -_ _ _ _ firm to stiff 8 SS 19 100 0,0 4 brown fissured 10 very stiff Ŧ 5 SS 22 75 0,0 12 brownish grey oxidized fissure 4 SS faces 6 27 75 0.0 14 SILTY CLAY trace sand, trace gravel 16 7 SS 20 100 15,0 Х 18 8 SS 18 100 0.0 6 20 ≱ brown Ξ veined grey SS 13 100 25,0 9 = stiff Silica Sand 22 Slot 3.05 m Screen Х 24 -7.62 Ξ stiff grey SILTY CLAY 10 SS 10 100 0.0 26 trace sand, trace gravel 8 == faintly layered 28 Drilled By: Pontil Drilling, CME 75 Hole Size: 200 mm Drill Method: Split Spoon Sampling and Hollow Augers Screening Tool: Eagle II Drill Date: 2021-06-21 Sheet: 1 of 2

9135 Keele Street, Unit A1 Concord, Ontario L4K 0J4 www.wattersenvironmental.com 416-361-2407 Project No.: 21-0082.03Client: CommunityLocation: 822,828, 834 & 838 Richmond St. W., Toronto, ONProject Manager: JRTotal Depth: 12.25 mLogged By: TA & AWGround Elevation: 0

SAMPLE SUBSURFACE PROFILE T.O.V. CGD/PID Depth/Elev. (m) Lab Submitted Well Completion Moisture (%) Recovery % Data Description Symbol Number **N-Value** Depth Type 30 stiff grey SILTY CLAY 11 SS 12 100 0,0 Х trace sand, trace gravel faintly layered 32 10 34 -10.67 weatherd grey 36 12 SS 58 80 0,0 SHALY CLAY -11.58 38 hard grey CLAYEY SHALE 12 13 SS 50 for 70 mm 75 0,0 -12.25 40 End of Borehole 42 44 14 46 48 50 52 16 54 Drilled By: Pontil Drilling, CME 75 Hole Size: 200 mm Drill Method: Split Spoon Sampling and Hollow Augers Screening Tool: Eagle II Drill Date: 2021-06-21 Sheet: 2 of 2
Borehole No: BH105

9135 Keele Street, Unit A1 Concord, Ontario L4K 0J4 www.wattersenvironmental.com 416-361-2407 Project No.: 21-0082.03Client: CommunityLocation: 822,828, 834 & 838 Richmond St. W., Toronto, ONProject Manager: JRTotal Depth: 3.81 mLogged By: TA & MWGround Elevation: 0

	SUBSURFACE PROFILE					SAM	/PLI	-			
Depth	Symbol	Description	Depth/Elev. (m)	Number	Type	N-Value	Recovery %	T.O.V. CGD/PID	Lab Submitted	Moisture (%)	Well Completion Data
ft m		Ground Surface	0.00								
		60 mm Asphalt 300 mm Sand and Gravel		1	ss		75	0,0			
4		loose, moist silt, clay, trace gravel, trace brick FILL		2	ss		90	0,0			
6 1 1 1 1			-1.83	3	ss		75	0,0			
8 2		brown to grey, silt and clay trace gravel		4	ss		75	0,0			
10		FILL		5	ss		75	0,0	x		
12		equipment refusal at 3.81 m	-3.81	6	SS		75	5,0	x		
4 14 16 18 20 4 6 22 24 24 26 8 28		End of Borehole									
Drillec Drill M Drill D	Drilled By: TriPhase Group, Hilti TE1500-AVRHole Size: 64 mmDrill Method: Split Spoon SamplingScreening Tool: Eagle IIDrill Date: 2021-07-09Sheet: 1 of 1										

Borehole No: MW106D

9135 Keele Street, Unit A1 Concord, Ontario L4K 0J4 www.wattersenvironmental.com 416-361-2407 Project No.: 21-0082.03Client: CommunityLocation: 822,828, 834 & 838 Richmond St. W., Toronto, ONProject Manager: JRTotal Depth: 9.75 mLogged By: TA & AWGround Elevation: 0

SUBSURFACE PROFILE			SAMPLE									
Symbol	Description	Depth/Elev. (m)	Number	Type	N-Value	Recovery %	T.O.V. CGD/PID	Lab Submitted	Moisture (%)	Well C	omple Data	tion
m	Ground Surface	0.00								6.71		
-	50 mm Asphalt 50 mm Sand and Gravel loose damp sand, silt		1	ss	12	50	0,0	х		oncrete		asing
	trace gravel, trace brick FILL	-1.37	2	ss	4	10	0,0			Ö		Steel C
2	lightly compacted brown silty clay trace sand, trace gravel, trace cinder FILL		3	ss	7	100	0,0					
	×	-2.29								onite		
	loose sand, silt gravel trace cinders, trace asphalt, trace wood		4	SS	4	30	0,0			Bento		
	fragments frequent clay lumps FILL	2 01	5	ss	3	60	0,0					
4 #1	brown veined grey	-5.01	6	ss	11	75	0,0					
HH	brown with		7	ss	23	75	15,0	x				
H	brown veined grey		8	SS	21	100	0,0					
6	SILTY CLAY trace sand, trace gravel		9	ss	20	100	0,0					T
H	grey to brown		10	SS	7	100	0,0	x		llica Sand		Screen
H	occasional closed fissure			sv	110 kPa R - 50 kPa					S	Ξ	3.05 m
- 8			11	ss	6	100	0,0			W.L		Slot
	grey										Ξ	Ţ
rilled By: rill Metho rill Date: 2	Pontil Drilling, CME 75 d: Split Spoon Sampling and Hollow Augers 2021-06-22			·				Hole Scre She	e Size eening eet: 1 c	: 200 mm g Tool: E	agle II	t

Borehole No: MW106D

9135 Keele Street, Unit A1 Concord, Ontario L4K 0J4 www.wattersenvironmental.com 416-361-2407 Project No.: 21-0082.03Client: CommunityLocation: 822,828, 834 & 838 Richmond St. W., Toronto, ONProject Manager: JRTotal Depth: 9.75 mLogged By: TA & AWGround Elevation: 0

SUBSURFACE PROFILE						SAI	MPLI	E			
Depth	Symbol	Description	Depth/Elev. (m)	Number	Type	N-Value	Recovery %	T.O.V. CGD/PID	Lab Submitted	Moisture (%)	Well Completion Data
				12	SS	18	60	0,0			
30		grey SILTY CLAY trace sand, trace gravel	-9 75	13	SS	12	50	0,0	x		
32 10		End of Borehole									
34											
36											
38											
40 12											
42											
48											
50											
52 - 16											
54											
Drilled	By: Po	ontil Drilling, CME 75							Hol	e Size:	: 200 mm
Drill M	Drill Method: Split Spoon Sampling and Hollow AugersScreening Tool: Eagle IIDrill Date: 2021-06-22Sheet: 2 of 2										

Borehole No: MW106S

9135 Keele Street, Unit A1 Concord, Ontario L4K 0J4 www.wattersenvironmental.com 416-361-2407 Project No.: 21-0082.03Client: CommunityLocation: 822,828, 834 & 838 Richmond St. W., Toronto, ONProject Manager: JRTotal Depth: 9.75 mLogged By: TA & AWGround Elevation: 0

SUBSURFACE PROFILE						SA	MPL	Ξ			
Depth	Symbol	Description	Depth/Elev. (m)	Number	Type	N-Value	Recovery %	T.O.V. CGD/PID	Lab Submitted	Moisture (%)	Well Completion Data
$0 \frac{\text{ft}}{1} 0$		Ground Surface	0.00								
2 1 4 1 1		50 mm Asphalt 50 mm Sand and Gravel loose damp sand, silt trace gravel, trace brick FILL	-1.37								Concrete
6 2		lightly compacted brown silty clay trace sand, trace gravel, trace cinder FILL	-2.29								eeu
8 10 10		loose sand, silt gravel trace cinders, trace asphalt, trace wood fragments frequent clay lumps FILL									Silica Sand
12			2.04								
12 - 4		SILTY CLAY trace sand trave gravel	-3.81								W.L
		End of Borehole									
16											
18											
20 - 6											
22											
24											
26 8											
28											
Drilleo	Bv: Po	ontil Drilling. CME 75							Hole	e Size:	: 200 mm
Drill M	lethod:	Split Spoon Sampling and Hollow Augers							Scr	eenind	I Tool: Eagle II
Drill D	ate: 202	21-06-22							She	et: 1 o	f 1

Appendix B

Grain Size Distribution Analyses (Alston, 2021)

Tested By: AM

Mass Sample (; 100 Mass of retained (mr) (g)	g): mass fraction (mf)	T (°C) 20 Percent Passing (pp)		100 75 75 70 70 75				BH103, S10 Silty clay, some sand, trace gravel. Geometric mean K = 2.0x10 ⁻⁹ m/s.				
) 0	100						Effective Grain Diameters (mm)		Other Useful Paramet	ers	
5	, 0.02	98		ATIN				d10	0.001	Uniformity Coef.	19.58	
3	3 0.08	90		W				d17	0.001	n computed	0.261640	
L I	0.05	85		ට 25				d20	0.001	g (cm/s ²)	980.00	
3 14	5 015	70						d50	0.007	ο (g/cm ³)	0.9981	
2 4	0.04	66						d60	0.012	μ (g/cm s)	0.0098	
4 6	5 0.06	60		0				d _{geometric} mean	0.088	ρg/μ (1/cm s)	9.9327E+04	
7 10	0.1	50		0.001 0.01	0.1	1	10	de (Kruger)	0.016	tau (Sauerbrei)	1.053	
) 20	0.2	30			GRAIN SIZE (MI	M)		de (Kozeny)	0.004	d5,	-11.625	
								de (Zunker)	0.004	d16,	-9.947	
				Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de (Zamarin)	0.004	d50₄	-7.153	
				Hazen	.243E-06	.243E-08	0.000	– lo (Alyameni)	-0.001	d84,	-3.008	
				Hazen K (cm/s) = d_{10}^{2} (mm ²)	.401E-06	.401E-08	0.000			d95₄	1.695	
				Slichter	486F-07	.486F-09	0.000	25		σ	3 753	
				Terzaghi	.710E-07	.710F-09	0.000	20	mm	υ _φ	% in sample	
				Beyer	.292E-06	.292E-08	0.000		>64	Boulder	, o in sumpre	
			✓	Sauerbrei	.149E-06	.149E-08	0.000	15	16 - 64	coarse gravel		
				Kruger	.528E-04	.528E-06	0.046	10	8 - 16	medium gravel	0.000	
				Kozeny-Carmen	.379E-05	.379E-07	0.003		2 - 8	fine gravel	2.000	
				Zunker	.290E-05	.290E-07	0.003	5	0.5 - 2	coarse sand		
				Zamarin	.353E-05	.353E-07	0.003		0.25 - 0.5	medium sand	8.000	
				USBR	.103E-06	.103E-08	0.000	× it	0.063 - 0.25	fine sand	5.000	
			√	Barr	.526E-07	.526E-09	0.000	buld grav grav sar sar sar sar sar sar sar sar sar sar	0.016 - 0.063	coarse silt	19	
			✓	Alyamani and Sen	.961E-06	.961E-08	0.001	Br arse fine fine fine fine fine fi	0.008 - 0.016	medium silt	6	
				Chapuis	.751E-09	.751E-11	0.000	medi T T	0.002 - 0.008	fine silt	10	
				Krumbein and Monk	.424E-04	.424E-06	0.037		<0.002	clay	20	
				geometric mean	.196E-06	.196E-08	.170E-03					
				arithmetic mean	.388E-06	.388E-08	.335E-03					

	M	/lass Sample (g)		T (°C)
		100		20
Sieve opening d; (ϕ)	Sieve opening (ps) d _i (mm)	Mass of retained (mr) (g)	mass fraction (mf)	Percent Passing (pp)
3.3193	10	0	0	100
2.320091	5	2	0.02	98
-1.735591	0.3	8	0.08	90
-2.930041	0.131	5	0.05	85
-5.054891	0.03	15	0.15	70
-5.639391	0.02	4	0.04	66
-6.328505	0.0124	6	0.06	60
-7.152766	0.007	10	0.1	50
-9.032633	0.0019	20	0.2	30

Appendix C

Single Well Response Tests (Palmer, 2021)

Aquifer Model: Confined

K = 8.878E-7 m/sec

Solution Method: Bouwer-Rice

y0 = 0.07588 m

SOLUTION

Aquifer Model: Confined

K = 1.786E-7 m/sec

Solution Method: Bouwer-Rice

y0 = 0.1808 m

 AQUIFER DATA

 AQUIFER DATA

 Saturated Thickness: 0.81 m

 Saturated Thickness: 0.81 m

 WELL DATA (MW106-s (First RH))

 Initial Displacement: 0.3134 m

 Static Water Column Height: 0.81 m

 Screen Length: 3. m

 WEIL DATA (MW106-s (First RH))

 Initial Displacement: 0.3134 m
 Static Water Column Height: 0.81 m

 Screen Length: 3. m

 Well Radius: 0.22 m

 Gravel Pack Porosity: 0.

SOLUTION

Aquifer Model: <u>Unconfined</u>

K = 7.342E-6 m/sec

Solution Method: Bouwer-Rice

y0 = 0.03081 m

Appendix D

Laboratory Certificate of Analysis (ALS, 2021)

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) ATTN: Andrei Miler 74 Berkeley Street Toronto ON M5V 1E3 Date Received:02-JUL-21Report Date:14-JUL-21 12:21 (MT)Version:FINAL

Client Phone: 647-795-8153

Certificate of Analysis

Lab Work Order #: L2609138 Project P.O. #: NOT SUBMITTED Job Reference: 822 C of C Numbers: Legal Site Desc:

invertaterso

Jennifer Barkshire-Paterson Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 95 West Beaver Creek Road, Unit 1, Richmond Hill, ON L4B 1H2 Canada | Phone: +1 905 881 9887 | Fax: +1 905 881 8062 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 🔊

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Summary of Guideline Exceedances

Guideline								
ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit		
Ontario Toronto Sanitary Discharge Sewer By-Law 100-2016 (FEB 4,2016) - Ontario Toronto Sanitary Discharge Sewer By-Law (No parameter exceedances) Ontario Toronto Sanitary Discharge Sewer By-Law 100-2016 (FEB 4,2016) - Ontario Toronto Storm Sewer By-Law								
L2609138-1	MW-106- 5	Physical Tests Total Metals	Total Suspended Solids Manganese (Mn)-Total Mercury (Hg)-Total Zinc (Zn)-Total	160 1.11 0.00162 0.063	15 0.05 0.0004 0.04	mg/L mg/L mg/L mg/L		

L2609138 CONT'D.... Job Reference: 822 PAGE 3 of 18 14-JUL-21 12:21 (MT)

Physical Tests - WATER

	S	L2609138-1 02-JUL-21 MW-106- 5		
Analyte	(Unit	Guide #1	Limits #2	
рН	pH units	6.00- 11.5	6.0-9.5	7.37
Total Suspended Solids	mg/L	350	15	160

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2609138 CONT'D.... Job Reference: 822 PAGE 4 of 18 14-JUL-21 12:21 (MT)

Anions and Nutrients - WATER

		l Sample Sam	Lab ID e Date ple ID	L2609138-1 02-JUL-21 MW-106- 5
Analyte	Unit	Guide #1	Limits #2	
Fluoride (F)	mg/L	10	-	0.14 DLDS
Total Kjeldahl Nitrogen	mg/L	100	-	2.00 DLM
Phosphorus, Total	mg/L	10	0.4	0.347

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2609138 CONT'D Job Reference: 822 PAGE 5 of 18 14-JUL-21 12:21 (MT)

Cyanides - WATER

		Sample Sam	Lab ID e Date ple ID	L2609138-1 02-JUL-21 MW-106- 5
Analyte	Unit	Guide #1	Limits #2	
Cyanide, Total	mg/L	2	0.02	<0.0020

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2609138 CONT'D.... Job Reference: 822 PAGE 6 of 18 14-JUL-21 12:21 (MT)

Bacteriological Tests - WATER

	S	Lab ID Sample Date Sample ID					
	C	Guide	Limits				
Analyte	Unit	#1	#2				
E. Coli	CFU/100m L	-	200	0			

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2609138 CONT'D Job Reference: 822 PAGE 7 of 18 14-JUL-21 12:21 (MT)

Total Metals - WATER

		Sampl Sarr	Lab ID e Date iple ID	L2609138-1 02-JUL-21 MW-106- 5
Analyte	Unit	Guide #1	Limits #2	
Aluminum (Al)-Total	mg/L	50	-	3.18 DLHC
Antimony (Sb)-Total	mg/L	5	-	<0.0010
Arsenic (As)-Total	mg/L	1	0.02	0.0048 ^{DLHC}
Cadmium (Cd)-Total	mg/L	0.7	0.008	0.000063
Chromium (Cr)-Total	mg/L	4	0.08	0.0071 ^{DLHC}
Cobalt (Co)-Total	mg/L	5	-	0.0027 ^{DLHC}
Copper (Cu)-Total	mg/L	2	0.04	0.0127 ^{DLHC}
Lead (Pb)-Total	mg/L	1	0.12	0.104 DLHC
Manganese (Mn)-Total	mg/L	5	0.05	1.11 DLHC
Mercury (Hg)-Total	mg/L	0.01	0.0004	0.00162
Molybdenum (Mo)-Total	mg/L	5	-	0.00276
Nickel (Ni)-Total	mg/L	2	0.08	0.0064 ^{DLHC}
Selenium (Se)-Total	mg/L	1	0.02	0.00073
Silver (Ag)-Total	mg/L	5	0.12	<0.00050
Tin (Sn)-Total	mg/L	5	-	0.0247 ^{DLHC}
Titanium (Ti)-Total	mg/L	5	-	0.109 DLHC
Zinc (Zn)-Total	mg/L	2	0.04	0.063 DLHC

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2609138 CONT'D Job Reference: 822 PAGE 8 of 18 14-JUL-21 12:21 (MT)

Speciated Metals - WATER

		Sampl Sam	Lab ID e Date ple ID	L2609138-1 02-JUL-21 MW-106- 5
Analyte	Unit	Guide #1	Limits #2	
Chromium, Hexavalent	mg/L	2	0.04	<0.00050

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2609138 CONT'D Job Reference: 822 PAGE 9 of 18 14-JUL-21 12:21 (MT)

Aggregate Organics - WATER

		Lab ID Sample Date Sample ID		
Analyte	Unit	Guide #1	Limits #2	
BOD	mg/L	300	15	<3.0 BODL
Oil and Grease, Total	mg/L	-	-	<5.0
Animal/Veg Oil & Grease	mg/L	150	-	<5.0
Mineral Oil and Grease	mg/L	15	-	<2.5
Phenols (4AAP)	mg/L	1.0	0.008	<0.0010

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2609138 CONT'D.... Job Reference: 822 PAGE 10 of 18 14-JUL-21 12:21 (MT)

Volatile Organic Compounds - WATER

		L Sample Sam	L2609138-1 02-JUL-21 MW-106- 5	
Analyte	Unit	Guide #1	Limits #2	
Benzene	ug/L	10	2	<0.50 ^{OWP}
Chloroform	ug/L	40	2	<1.0 ^{OWP}
1,2-Dichlorobenzene	ug/L	50	5.6	<0.50 ^{OWP}
1,4-Dichlorobenzene	ug/L	80	6.8	<0.50 ^{OWP}
cis-1,2-Dichloroethylene	ug/L	4000	5.6	<0.50 ^{OWP}
Dichloromethane	ug/L	2000	5.2	<2.0 ^{OWP}
trans-1,3-Dichloropropene	ug/L	140	-	<0.50 ^{OWP}
Ethylbenzene	ug/L	160	2	<0.50 ^{OWP}
1,1,2,2-Tetrachloroethane	ug/L	1400	17	<0.50 ^{OWP}
Tetrachloroethylene	ug/L	1000	4.4	<0.50 ^{OWP}
Toluene	ug/L	16	2	<0.50 ^{OWP}
Trichloroethylene	ug/L	400	7.6	<0.50 ^{OWP}
o-Xylene	ug/L	-	-	<0.50 ^{OWP}
m+p-Xylenes	ug/L	-	-	<1.0 ^{OWP}
Xylenes (Total)	ug/L	1400	4.4	<1.1
Surrogate: 4-Bromofluorobenzene	%	-	-	97.0
Surrogate: 1,4-Difluorobenzene	%	-	-	100.6

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2609138 CONT'D Job Reference: 822 PAGE 11 of 18 14-JUL-21 12:21 (MT)

Polycyclic Aromatic Hydrocarbons - WATER

		Sampl Sam	Lab ID e Date ple ID	L2609138-1 02-JUL-21 MW-106- 5
Analyte	Unit	Guide #1	Limits #2	
Acenaphthene	ug/L	-	-	<0.010
Anthracene	ug/L	-	-	<0.010
Benzo(a)anthracene	ug/L	-	-	0.032
Benzo(a)pyrene	ug/L	-	-	0.032
Benzo(b&j)fluoranthene	ug/L	-	-	0.047
Benzo(e)pyrene	ug/L	-	-	<0.050
Benzo(ghi)perylene	ug/L	-	-	0.024
Benzo(k)fluoranthene	ug/L	-	-	0.014
Chrysene	ug/L	-	-	0.042
Dibenz(a,h)acridine	ug/L	-	-	<0.050
Dibenz(a,j)acridine	ug/L	-	-	<0.050
Dibenz(a,h)anthracene	ug/L	-	-	<0.010
Dibenzo(a,i)pyrene	ug/L	-	-	<0.050
7H-Dibenzo(c,g)carbazole	ug/L	-	-	<0.050
1,3-Dinitropyrene	ug/L	-	-	<1.0
1,6-Dinitropyrene	ug/L	-	-	<1.0
1,8-Dinitropyrene	ug/L	-	-	<1.0
Fluoranthene	ug/L	-	-	0.074
Fluorene	ug/L	-	-	<0.010
Indeno(1,2,3-cd)pyrene	ug/L	-	-	0.025
Naphthalene	ug/L	-	-	0.011
Perylene	ug/L	-	-	0.020
Phenanthrene	ug/L	-	-	0.033
Pyrene	ug/L	-	-	0.059
Surrogate: 2-Fluorobiphenyl	%	-	-	78.0
Surrogate: D14-Terphenyl	%	-	-	61.8
Surrogate: d14-Terphenyl	%	-	-	63.5
Total PAHs	ug/L	5	2	<1.7

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

* Please refer to the Reference Information section for an explanation of any qualifiers noted.

L2609138 CONT'D.... Job Reference: 822 PAGE 12 of 18 14-JUL-21 12:21 (MT)

Semi-Volatile Organics - WATER

		Sampl Sarr	Lab ID e Date ple ID	L2609138-1 02-JUL-21 MW-106- 5
Analyte	Unit	Guide #1	Limits #2	
3,3'-Dichlorobenzidine	ug/L	2	0.8	<0.40
Di-n-butylphthalate	ug/L	80	15	<1.0
Bis(2-ethylhexyl)phthalate	ug/L	12	8.8	<2.0
Pentachlorophenol	ug/L	5	2	<0.50
Surrogate: 2-Fluorobiphenyl	%	-	-	86.9
Surrogate: p-Terphenyl d14	%	-	-	59.0
Surrogate: 2,4,6-Tribromophenol	%	-	-	94.0

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2609138 CONT'D.... Job Reference: 822 PAGE 13 of 18 14-JUL-21 12:21 (MT)

Polychlorinated Biphenyls - WATER

		Sampl Sam	Lab ID e Date iple ID	L2609138-1 02-JUL-21 MW-106- 5
Analyte	Unit	Guide #1	Limits #2	
Aroclor 1242	ug/L	-	-	<0.020
Aroclor 1248	ug/L	-	-	<0.020
Aroclor 1254	ug/L	-	-	<0.020
Aroclor 1260	ug/L	-	-	<0.020
Surrogate: Decachlorobiphenyl	%	-	-	65.7
Total PCBs	ug/L	1	0.4	<0.040
Surrogate: Tetrachloro-m-xylene	%	-	-	72.9

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2609138 CONT'D.... Job Reference: 822 PAGE 14 of 18 14-JUL-21 12:21 (MT)

Organic Parameters - WATER

	Lab ID Sample Date Sample ID			L2609138-1 02-JUL-21 MW-106- 5
Analyte	Unit	Guide #1	Limits #2	
Nonylphenol	ug/L	20	1	<1.0
Nonylphenol Diethoxylates	ug/L	-	-	<0.10
Total Nonylphenol Ethoxylates	ug/L	200	10	<2.0
Nonylphenol Monoethoxylates	ug/L	-	-	<2.0

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Qualifiers for Individual Parameters Listed:

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical Conductivity.
BODL	Limit of Reporting for BOD was increased to account for the largest volume of sample tested.
DLM	Detection Limit Adjusted due to sample matrix effects (e.g. chemical interference, colour, turbidity).
OWP	Organic water sample contained visible sediment (must be included as part of analysis). Measured concentrations of organic substances in water can be biased high due to presence of

sediment.

DLHC Detection Limit Raised: Dilution required due to high concentration of test analyte(s).

	Matrix	Test Description	Method Reference**
625-PAH-LOW-WT	Water	EPA 8270 PAH (Low Level)	SW846 8270
Aqueous samples are benzo(b)fluoranthene	extracted and ex or benzo(k)fluora	xtracts are analyzed on GC/MSD. Depend anthene.	ing on the analytical GC/MS column used benzo(j)fluoranthene may chromatographically co-elute with
625-SAN-WT	Water	Ontario Sanitary Sewer SVOC Targe	t SW-846 8270
Samples are extracted	I with solvent an	d then analyzed by GC/MS.	
BOD-WT	Water	BOD	APHA 5210 B
This analysis is carried and incubating a samp glass fibre filter prior to	d out using proce ble for a specified dilution. Carbo	edures adapted from APHA Method 5210E d time period, and measuring the oxygen o naceous BOD (CBOD) is determined by a	B - "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting depletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through dding a nitrification inhibitor to the diluted sample prior to incubation.
CN-TOT-WT	Water	Cyanide, Total	ISO 14403-2
Total cyanide is deterr combination of barbitu	nined by the con ric acid and ison	nbination of UV digestion and distillation. (icotinic acid to form a highly colored comp	Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a blex.
When using this methor ALS recommends ana	od, high levels o lysis for thiocya	f thiocyanate in samples can cause false p nate to check for this potential interference	positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method,
CR-CR6-IC-WT	Water	Chromium +6	EPA 7199
This analysis is carried	d out using proce	edures adapted from "Test Methods for Ev	valuating Solid Waste" SW-846 Method 7199 published by the United States Environmental Protection Agency (EPA
The procedure involve chromium and the chro	s analysis for ch omium (VI) resul	romium (VI) by ion chromatography using lts.	diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total
The procedure involve chromium and the chro Analysis conducted in	s analysis for ch omium (VI) resul accordance with	romium (Vİ) by ion chromatography using lts. n the Protocol for Analytical Methods Used	lin the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
The procedure involve chromium and the chromium and the chromited in Analysis conducted in EC-SCREEN-WT	s analysis for ch omium (VI) resul accordance with Water	romium (Vİ) by ion chromatography using lts. n the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only)	diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total
The procedure involve chromium and the chro Analysis conducted in EC-SCREEN-WT Qualitative analysis of	s analysis for ch omium (VI) resul accordance with Water conductivity whe	romium (Vİ) by ion chromatography using Its. n the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes	diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total I in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). APHA 2510 sts - e.g. TDS, metals, etc.
The procedure involve chromium and the chro Analysis conducted in EC-SCREEN-WT Qualitative analysis of EC-WW-MF-WT	s analysis for ch omium (VI) resul accordance with Water conductivity whe Water	romium (Vİ) by ion chromatography using lts. n the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes E. Coli	diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total I in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). APHA 2510 sts - e.g. TDS, metals, etc. SM 9222D
The procedure involve chromium and the chro Analysis conducted in EC-SCREEN-WT Qualitative analysis of EC-WW-MF-WT A 100 mL volume of sa	s analysis for ch omium (VI) resul accordance with Water conductivity whe Water ample is filtered	aromium (Vİ) by ion chromatography using Its. In the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes E. Coli through a membrane, the membrane is pl	diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total I in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). APHA 2510 sts - e.g. TDS, metals, etc. SM 9222D aced on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200
The procedure involve chromium and the chro Analysis conducted in EC-SCREEN-WT Qualitative analysis of EC-WW-MF-WT A 100 mL volume of sa F-IC-N-WT	s analysis for ch omium (VI) resul accordance with Water conductivity who Water ample is filtered Water	aromium (Vİ) by ion chromatography using Its. In the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes E. Coli through a membrane, the membrane is pl Fluoride in Water by IC	 diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total l in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). APHA 2510 sts - e.g. TDS, metals, etc. SM 9222D aced on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200 EPA 300.1 (mod)
The procedure involve chromium and the chro Analysis conducted in EC-SCREEN-WT Qualitative analysis of EC-WW-MF-WT A 100 mL volume of si F-IC-N-WT Inorganic anions are a	s analysis for ch omium (VI) resul accordance with Water conductivity whe Water ample is filtered Water nalyzed by Ion (romium (Vİ) by ion chromatography using Its. In the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes E. Coli through a membrane, the membrane is pl Fluoride in Water by IC Chromatography with conductivity and/or U	 diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total l in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). APHA 2510 sts - e.g. TDS, metals, etc. SM 9222D aced on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200 EPA 300.1 (mod) JV detection.
The procedure involve chromium and the chro Analysis conducted in EC-SCREEN-WT Qualitative analysis of EC-WW-MF-WT A 100 mL volume of sa F-IC-N-WT Inorganic anions are a HG-T-CVAA-WT	s analysis for ch omium (VI) resul accordance with Water conductivity whe Water ample is filtered Water nalyzed by Ion C Water	romium (Vİ) by ion chromatography using Its. In the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes E. Coli through a membrane, the membrane is pl Fluoride in Water by IC Chromatography with conductivity and/or U Total Mercury in Water by CVAAS	diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total I in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). APHA 2510 sts - e.g. TDS, metals, etc. SM 9222D aced on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200 EPA 300.1 (mod) JV detection. EPA 1631E (mod)
The procedure involve chromium and the chro Analysis conducted in EC-SCREEN-WT Qualitative analysis of EC-WW-MF-WT A 100 mL volume of sa F-IC-N-WT Inorganic anions are a HG-T-CVAA-WT Water samples underc	s analysis for ch omium (VI) resul accordance with Water conductivity whe Water ample is filtered Water nalyzed by Ion C Water	aromium (Vİ) by ion chromatography using Its. In the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes E. Coli through a membrane, the membrane is pl Fluoride in Water by IC Chromatography with conductivity and/or U Total Mercury in Water by CVAAS	 diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total l in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). APHA 2510 sts - e.g. TDS, metals, etc. SM 9222D aced on mFC-BCIG agar and incubated at 44.5 –0 .2 °C for 24 – 2 h. Method ID: WT-TM-1200 EPA 300.1 (mod) JV detection. EPA 1631E (mod) duction with stannous chloride, and analyzed by CVAAS.

lothode Listod (if applica	blo).		
ALS Test Code	Matrix	Test Description	Method Reference**
Water samples are diges	sted with nitric	c and hydrochloric acids, and analyzed b	VY CRC ICPMS.
Method Limitation (re: S	ulfur): Sulfide	and volatile sulfur species may not be re	ecovered by this method.
Analysis conducted in ac	cordance wit	h the Protocol for Analytical Methods I is	ed in the Assessment of Properties under Part XV 1 of the Environmental Protection Act (July 1, 2011)
NP,NPE-LCMS-WT	Water	Nonylphenols and Ethoxylates by LC/MS-MS	J. Chrom A849 (1999) p.467-482
Water samples are filter	red and analy:	zed on LCMS/MS by direct injection.	
OGG-SPEC-CALC-WT	Water	Speciated Oil and Grease A/V Calo	c CALCULATION
Sample is extracted with	hexane, sam	ple speciation into mineral and animal/v	egetable fractions is achieved via silica gel separation and is then determined gravimetrically.
OGG-SPEC-WT	Water	Speciated Oil and Grease-Gravime	etric APHA 5520 B
The procedure involves a determined gravimetrica	an extraction	of the entire water sample with hexane.	Sample speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then
P-T-COL-WT	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried o	out using proc	edures adapted from APHA Method 450	0-P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.
PAH-EXTRA-WT	Water	Sanitary Sewer Use By-Law Addition PAH	onal SW 846 8270
PAH-SUM-CALC-WT	Water	TOTAL PAH's	CALCULATION
Total PAH represents the to be included.	e sum of all P	AH analytes reported for a given sample	e. Note that regulatory agencies and criteria differ in their definitions of Total PAH in terms of the individual PAH analyte
PCB-WT	Water	Polychlorinated Biphenyls	EPA 8082
PCBs are extracted from	n an aqueous	sample at neutral pH with aliquots of dic	hloromethane using a modified separatory funnel technique. The extracts are analyzed by GC/MSD.
PH-WT	Water	рН	APHA 4500 H-Electrode
Water samples are analy	yzed directly b	by a calibrated pH meter.	
Analysis conducted in ac samples under this regul	ccordance with lation is 28 da	h the Protocol for Analytical Methods Us ays	ed in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for
PHENOLS-4AAP-WT	Water	Phenol (4AAP)	EPA 9066
An automated method is colorimetrically.	s used to distil	I the sample. The distillate is then buffer	red to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured
SOLIDS-TSS-WT	Water	Suspended solids	APHA 2540 D-Gravimetric
A well-mixed sample is f	iltered throug	h a weighed standard glass fibre filter an	d the residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achieved
TKN-F-WT	Water	TKN in Water by Fluorescence	J. ENVIRON. MONIT., 2005,7,37-42.RSC

Methods Listed (if applicable	e):			14-00E-21 12.21 (WT)
ALS Test Code	Matrix	Test Description	Method Reference**	
Total Kjeldahl Nitrogen is d	letermined usi	ng block digestion followed by Flow-injec	ction analysis with fluorescence detection	
VOC-ROU-HS-WT	Water	Volatile Organic Compounds	SW846 8260	
Aqueous samples are anal	yzed by heads	space-GC/MS.		
XYLENES-SUM-CALC-WT	Water	Sum of Xylene Isomer Concentrations	S CALCULATION	
Total xylenes represents th	ne sum of o-xy	lene and m&p-xylene.		
**ALS test methods may incorp	orate modifica	ations from specified reference methods	to improve performance.	
Chain of Custody Numbers:				
The last two letters of the abo	ove test code(s	s) indicate the laboratory that performed	analytical analysis for that test. Refer to the list below:	
Laboratory Definition Code	Laboratory	Location		
WT	ALS ENVIE	RONMENTAL - WATERLOO, ONTARIO	, CANADA	

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Andrei Miler

Quality Control Report

Workorder: L2609138

Report Date: 14-JUL-21

Page 1 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto ON M5V 1E3

Contact:

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-PAH-LOW-WT	Water							
Batch R5514523								
WG3570485-2 LCS								
Acenaphthene			64.4		%		50-140	08-JUL-21
Anthracene			78.0		%		50-140	08-JUL-21
Benzo(a)anthracene			97.4		%		50-140	08-JUL-21
Benzo(a)pyrene			74.0		%		60-130	08-JUL-21
Benzo(b&j)fluoranthene			87.1		%		60-130	08-JUL-21
Benzo(ghi)perylene			62.8		%		50-140	08-JUL-21
Benzo(k)fluoranthene			84.2		%		50-140	08-JUL-21
Chrysene			99.3		%		50-140	08-JUL-21
Dibenz(a,h)anthracene			72.2		%		50-140	08-JUL-21
Fluoranthene			90.5		%		50-140	08-JUL-21
Fluorene			73.1		%		50-140	08-JUL-21
Indeno(1,2,3-cd)pyrene			55.9		%		50-140	08-JUL-21
Naphthalene			64.0		%		50-130	08-JUL-21
Perylene			82.4		%		50-140	08-JUL-21
Phenanthrene			81.6		%		50-140	08-JUL-21
Pyrene			90.8		%		50-140	08-JUL-21
WG3570485-1 MB								
Acenaphthene			<0.010		ug/L		0.01	08-JUL-21
Anthracene			<0.010		ug/L		0.01	08-JUL-21
Benzo(a)anthracene			<0.010		ug/L		0.01	08-JUL-21
Benzo(a)pyrene			<0.010		ug/L		0.01	08-JUL-21
Benzo(b&j)fluoranthene			<0.010		ug/L		0.01	08-JUL-21
Benzo(ghi)perylene			<0.010		ug/L		0.01	08-JUL-21
Benzo(k)fluoranthene			<0.010		ug/L		0.01	08-JUL-21
Chrysene			<0.010		ug/L		0.01	08-JUL-21
Dibenz(a,h)anthracene			<0.010		ug/L		0.01	08-JUL-21
Fluoranthene			<0.010		ug/L		0.01	08-JUL-21
Fluorene			<0.010		ug/L		0.01	08-JUL-21
Indeno(1,2,3-cd)pyrene			<0.010		ug/L		0.01	08-JUL-21
Naphthalene			<0.010		ug/L		0.01	08-JUL-21
Perylene			<0.010		ug/L		0.01	08-JUL-21
Phenanthrene			<0.010		ug/L		0.01	08-JUL-21
Pyrene			<0.010		ug/L		0.01	08-JUL-21
Surrogate: 2-Fluorobiph	ienyl		72.5		%		40-130	08-JUL-21

Quality Control Report

Report Date: 14-JUL-21

Page 2 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto ON M5V 1E3

Workorder: L2609138

Contact: Andrei Miler

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-PAH-LOW-WT	Water							
Batch R5514	523							
WG3570485-1 MB Surrogate: D14-Terphenyl			84.0		%		40-130	08-JUL-21
625-SAN-WT	Water							
Batch R5516	357							
WG3570485-2 LO 3,3'-Dichlorobenzid	C S ine		53.0		%		50-140	09-JUL-21
Bis(2-ethylhexyl)phthalate			99.7		%		50-140	09-JUL-21
Di-n-butylphthalate			93.5		%		50-140	09-JUL-21
Pentachlorophenol			121.4		%		50-140	09-JUL-21
WG3570485-1 M 3,3'-Dichlorobenzid	B ine		<0.40		ug/L		0.4	09-JUL-21
Bis(2-ethylhexyl)ph	thalate		<2.0		ug/L		2	09-JUL-21
Di-n-butylphthalate		<1.0		ug/L		1	09-JUL-21	
Pentachlorophenol		<0.50		ug/L		0.5	09-JUL-21	
Surrogate: 2-Fluorobiphenyl			81.0		%		40-130	09-JUL-21
Surrogate: 2,4,6-Tr		71.9		%		40-130	09-JUL-21	
Surrogate: p-Terphenyl d14			105.7		%		40-130	09-JUL-21
BOD-WT	Water							
Batch R5514	134							
WG3568130-2 D	UP	L2608943-1						
BOD		<3.0	<3.0	RPD-NA	mg/L	N/A	30	02-JUL-21
WG3568130-3 LO BOD	CS		94.4		%		85-115	02-JUL-21
WG3568130-1 M BOD	В		<2.0		mg/L		2	02-JUL-21
CN-TOT-WT	Water							
Batch R5514	075							
WG3570775-24 D Cyanide, Total	UP	WG3570775 <0.0020	- 22 <0.0020	RPD-NA	mg/L	N/A	20	08-JUL-21
WG3570775-21 LO	cs		99.3		%		80-120	08-JUL-21
WG3570775-20 M Cyanide, Total	В		<0.0020		mg/L		0.002	08-JUL-21
WG3570775-23 M Cyanide, Total	S	WG3570775	-22 99.8		%		70-130	08-JUL-21

Quality Control Report

Report Date: 14-JUL-21

Page 3 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto ON M5V 1E3

Workorder: L2609138

Contact: Andrei Miler

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CR-CR6-IC-WT Batch R5514033	Water							
WG3570174-4 DUP Chromium, Hexavalent		WG3570174-3 <0.00050	<0.00050	RPD-NA	mg/L	N/A	20	06-JUL-21
WG3570174-2 LCS Chromium, Hexavalent			92.9		%		80-120	06-JUL-21
WG3570174-1 MB Chromium, Hexavalent			<0.00050		mg/L		0.0005	06-JUL-21
WG3570174-5 MS Chromium, Hexavalent		WG3570174-3	95.8		%		70-130	06-JUL-21
EC-WW-MF-WT	Water							
Batch R5509996 WG3568425-1 MB E. Coli			0		CFU/100mL		1	03-JUL-21
F-IC-N-WT	Water							
Batch R5513472								
WG3570369-14 DUP Fluoride (F)		WG3570369-1 0.023	3 0.024		mg/L	6.1	20	06-JUL-21
WG3570369-12 LCS Fluoride (F)			103.3		%		90-110	06-JUL-21
WG3570369-11 MB Fluoride (F)			<0.020		mg/L		0.02	06-JUL-21
WG3570369-15 MS Fluoride (F)		WG3570369-13	3 102.9		%		75-125	06-JUL-21
HG-T-CVAA-WT	Water							
Batch R5513159								
WG3569822-3 DUP Mercury (Hg)-Total		L2608837-1 <0.0000050	<0.000005	C RPD-NA	mg/L	N/A	20	06-JUL-21
WG3569822-2 LCS Mercury (Hg)-Total			92.3		%		80-120	06-JUL-21
WG3569822-1 MB Mercury (Hg)-Total			<0.000005	с	mg/L		0.000005	06-JUL-21
WG3569822-4 MS Mercury (Hg)-Total		L2608934-1	N/A	MS-B	%		-	06-JUL-21

MET-T-CCMS-WT

Water

Workorder: L2609138

Report Date: 14-JUL-21

Page 4 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street

Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R55119	62							
WG3568732-4 DUI	P	WG3568732-	3					
Aluminum (Al)-Total		18.5	18.1		mg/L	1.8	20	05-JUL-21
Antimony (Sb)-Total		<0.0010	<0.0010	RPD-NA	mg/L	N/A	20	05-JUL-21
Arsenic (As)-Total		0.0094	0.0089		mg/L	4.9	20	05-JUL-21
Cadmium (Cd)-Total		0.000272	0.000286		mg/L	4.8	20	05-JUL-21
Chromium (Cr)-Total		0.0351	0.0353		mg/L	0.8	20	05-JUL-21
Cobalt (Co)-Total		0.0133	0.0133		mg/L	0.1	20	05-JUL-21
Copper (Cu)-Total		0.0397	0.0388		mg/L	2.2	20	05-JUL-21
Lead (Pb)-Total		0.0238	0.0238		mg/L	0.1	20	05-JUL-21
Manganese (Mn)-Tot	tal	0.890	0.888		mg/L	0.2	20	05-JUL-21
Molybdenum (Mo)-To	otal	0.0109	0.0107		mg/L	1.6	20	05-JUL-21
Nickel (Ni)-Total		0.0294	0.0298		mg/L	1.4	20	05-JUL-21
Selenium (Se)-Total		0.00090	0.00103		mg/L	13	20	05-JUL-21
Silver (Ag)-Total		<0.00050	<0.00050	RPD-NA	mg/L	N/A	20	05-JUL-21
Tin (Sn)-Total		0.0022	0.0021		mg/L	3.7	20	05-JUL-21
Titanium (Ti)-Total		0.678	0.660		mg/L	2.8	20	05-JUL-21
Zinc (Zn)-Total		0.106	0.099		mg/L	6.5	20	05-JUL-21
WG3568732-2 LCS	S							
Aluminum (Al)-Total			102.4		%		80-120	05-JUL-21
Antimony (Sb)-Total			110.1		%		80-120	05-JUL-21
Arsenic (As)-Total			110.5		%		80-120	05-JUL-21
Cadmium (Cd)-Total			106.9		%		80-120	05-JUL-21
Chromium (Cr)-Total			105.6		%		80-120	05-JUL-21
Cobalt (Co)-Total			107.9		%		80-120	05-JUL-21
Copper (Cu)-Total			106.7		%		80-120	05-JUL-21
Lead (Pb)-Total			107.7		%		80-120	05-JUL-21
Manganese (Mn)-Tot	tal		106.1		%		80-120	05-JUL-21
Molybdenum (Mo)-To	otal		102.7		%		80-120	05-JUL-21
Nickel (Ni)-Total			105.8		%		80-120	05-JUL-21
Selenium (Se)-Total			109.7		%		80-120	05-JUL-21
Silver (Ag)-Total			107.8		%		80-120	05-JUL-21
Tin (Sn)-Total			107.2		%		80-120	05-JUL-21
Titanium (Ti)-Total			102.1		%		80-120	05-JUL-21
Zinc (Zn)-Total			108.8		%		80-120	05-JUL-21

Workorder: L2609138

Report Date: 14-JUL-21

Page 5 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto ON M5V 1E3

. . .

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS-WT	Water							
Batch R5511962								
WG3568732-1 MB			0.0050		~~~~~/l		0.005	
Antimony (Sh) Total			<0.0050		mg/L		0.005	05-JUL-21
Anumony (Sb)-Total			<0.00010		mg/L		0.0001	05-JUL-21
Arsenic (As)-Total			<0.00010	c	mg/L		0.0001	05-JUL-21
Cadmium (Cd)-Total			<0.000005	L	mg/L		0.000005	05-JUL-21
Chromium (Cr)- I otal			<0.00050		mg/L		0.0005	05-JUL-21
Cobalt (Co)- I otal			<0.00010		mg/L		0.0001	05-JUL-21
Copper (Cu)-I otal			<0.00050		mg/L		0.0005	05-JUL-21
Lead (Pb)-Total			<0.000050		mg/L		0.00005	05-JUL-21
Manganese (Mn)-Total			<0.00050		mg/L		0.0005	05-JUL-21
Molybdenum (Mo)-Total			<0.000050		mg/L		0.00005	05-JUL-21
Nickel (Ni)-Total			<0.00050		mg/L		0.0005	05-JUL-21
Selenium (Se)-Total			<0.000050		mg/L		0.00005	05-JUL-21
Silver (Ag)-Total			<0.000050		mg/L		0.00005	05-JUL-21
Tin (Sn)-Total			<0.00010		mg/L		0.0001	05-JUL-21
Titanium (Ti)-Total			<0.00030		mg/L		0.0003	05-JUL-21
Zinc (Zn)-Total			<0.0030		mg/L		0.003	05-JUL-21
WG3568732-5 MS Aluminum (Al)-Total		WG3568732-6	N/A	MS-B	%		-	05-JUL-21
Antimony (Sb)-Total			107.5		%		70-130	05-JUL-21
Arsenic (As)-Total			110.4		%		70-130	05-JUL-21
Cadmium (Cd)-Total			112.3		%		70-130	05-JUL-21
Chromium (Cr)-Total			111.4		%		70-130	05-JUL-21
Cobalt (Co)-Total			106.3		%		70-130	05-JUL-21
Copper (Cu)-Total			98.5		%		70-130	05-JUL-21
Lead (Pb)-Total			103.1		%		70-130	05-JUL-21
Manganese (Mn)-Total			N/A	MS-B	%		-	05-JUL-21
Molybdenum (Mo)-Total			106.6		%		70-130	05-JUL-21
Nickel (Ni)-Total			108.4		%		70-130	05-JUL-21
Selenium (Se)-Total			109.6		%		70-130	05-JUL-21
Silver (Ag)-Total			104.9		%		70-130	05-JUL-21
Tin (Sn)-Total			103.4		%		70-130	05-JUL-21
Titanium (Ti)-Total			N/A	MS-B	%		-	05-JUL-21
Zinc (Zn)-Total			106.2		%		70-130	05-JUL-21

Workorder: L2609138

Report Date: 14-JUL-21

Page 6 of 11

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client: 74 Berkeley Street

Toronto ON M5V 1E3

Contact: Andrei Miler

_

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NP,NPE-LCMS-WT	Water							
Batch R5515520)							
WG3569017-3 DUP		L2608572-1						
Nonylphenol		<1.0	<1.0	RPD-NA	ug/L	N/A	30	06-JUL-21
Nonylphenol Monoetho	oxylates	<2.0	<2.0	RPD-NA	ug/L	N/A	30	06-JUL-21
Nonylphenol Diethoxyla	ates	<0.10	<0.10	RPD-NA	ug/L	N/A	30	06-JUL-21
WG3569017-2 LCS Nonylphenol			86.1		%		75-125	06-JUL-21
Nonylphenol Monoetho	oxylates		88.5		%		75-125	06-JUL-21
Nonylphenol Diethoxyla	ates		97.5		%		75-125	06-JUL-21
WG3569017-1 MB								
Nonylphenol			<1.0		ug/L		1	06-JUL-21
Nonylphenol Monoetho	oxylates		<2.0		ug/L		2	06-JUL-21
Nonylphenol Diethoxyla	ates		<0.10		ug/L		0.1	06-JUL-21
WG3569017-4 MS		L2608572-1						
Nonylphenol			101.1		%		50-150	06-JUL-21
Nonylphenol Monoetho	oxylates		98.1		%		50-150	06-JUL-21
Nonylphenol Diethoxyla	ates		97.3		%		50-150	06-JUL-21
OGG-SPEC-WT	Water							
Batch R5521329)							
WG3574045-2 LCS								
Oil and Grease, Total			94.0		%		70-130	12-JUL-21
Mineral Oil and Grease	;		89.2		%		70-130	12-JUL-21
WG3574045-1 MB			~5.0		ma/l		5	40 11 11 04
Minoral Oil and Groase			<0.0		mg/L		25	12-JUL-21
Mineral Oli and Grease	;		<2.0		mg/∟		2.0	12-JUL-21
P-T-COL-WT	Water							
Batch R5514071								
WG3569174-3 DUP		L2608356-3	0.0226		ma/l	0.8	20	07 11 11 24
		0.0249	0.0220		iiig/L	9.6	20	07-JUL-21
Phosphorus, Total			99.2		%		80-120	07-JUL-21
WG3569174-1 MB Phosphorus, Total			<0.0030		mg/L		0.003	07-JUL-21
WG3569174-4 MS Phosphorus, Total		L2608356-3	89.1		%		70-130	07-JUL-21
PAH-EXTRA-WT	Water							

PAH-EXTRA-WT

Andrei Miler

Quality Control Report

Workorder: L2609138

Report Date: 14-JUL-21

Page 7 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto ON M5V 1E3

Contact:

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed PAH-EXTRA-WT Water R5515456 Batch WG3570485-2 LCS Benzo(e)pyrene 85.1 % 60-130 08-JUL-21 1,3-Dinitropyrene 111.4 % 60-130 08-JUL-21 1,6-Dinitropyrene 163.8 LCS-H % 60-130 08-JUL-21 Dibenz(a,h)acridine 99.5 % 60-130 08-JUL-21 1,8-Dinitropyrene 126.2 % 60-130 08-JUL-21 Dibenz(a,j)acridine 99.8 % 60-130 08-JUL-21 7H-Dibenzo(c,g)carbazole % 113.1 60-130 08-JUL-21 Dibenzo(a,i)pyrene 100.9 % 60-130 08-JUL-21 WG3570485-1 MB Benzo(e)pyrene < 0.050 ug/L 0.05 08-JUL-21 1,3-Dinitropyrene <1.0 ug/L 1 08-JUL-21 1,6-Dinitropyrene <1.0 ug/L 1 08-JUL-21 Dibenz(a,h)acridine < 0.050 ug/L 0.05 08-JUL-21 1 1,8-Dinitropyrene <1.0 ug/L 08-JUL-21 Dibenz(a,j)acridine < 0.050 0.05 ug/L 08-JUL-21 7H-Dibenzo(c,g)carbazole < 0.050 0.05 ug/L 08-JUL-21 Dibenzo(a,i)pyrene < 0.050 ug/L 0.05 08-JUL-21 Surrogate: d14-Terphenyl 85.8 % 40-130 08-JUL-21 PCB-WT Water R5516501 Batch WG3569515-2 LCS 110.6 Aroclor 1242 % 65-130 09-JUL-21 88.4 Aroclor 1248 % 65-130 09-JUL-21 Aroclor 1254 112.9 % 65-130 09-JUL-21 Aroclor 1260 113.1 % 65-130 09-JUL-21 WG3569515-1 MB Aroclor 1242 < 0.020 ug/L 0.02 09-JUL-21 Aroclor 1248 ug/L 0.02 < 0.020 09-JUL-21 Aroclor 1254 < 0.020 ug/L 0.02 09-JUL-21 Aroclor 1260 < 0.020 ug/L 0.02 09-JUL-21 Surrogate: Decachlorobiphenyl 110.2 % 50-150 09-JUL-21 Surrogate: Tetrachloro-m-xylene 78.3 % 50-150 09-JUL-21

PH-WT

Water

Report Date: 14-JUL-21

Page 8 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto ON M5V 1E3

Workorder: L2609138

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-WT	Water							
Batch R5510702								
WG3568407-4 DUP рН		WG3568407-3 7.58	7.54	J	pH units	0.04	0.2	03-JUL-21
WG3568407-2 LCS рН			7.00		pH units		6.9-7.1	03-JUL-21
PHENOLS-4AAP-WT	Water							
Batch R5513831								
WG3569956-3 DUP Phenols (4AAP)		WG3569956-5 <0.0010	<0.0010	RPD-NA	mg/L	N/A	20	06-JUL-21
WG3569956-2 LCS Phenols (4AAP)			99.2		%		85-115	06-JUL-21
WG3569956-1 MB Phenols (4AAP)			<0.0010		mg/L		0.001	06-JUL-21
WG3569956-4 MS Phenols (4AAP)		WG3569956-5	95.5		%		75-125	06-JUL-21
SOLIDS-TSS-WT	Water							
Batch R5514559								
WG3570562-3 DUP Total Suspended Solids	5	L2608963-1 850	850		mg/L	0.0	20	08-JUL-21
WG3570562-2 LCS Total Suspended Solids	3		98.0		%		85-115	08-JUL-21
WG3570562-1 MB Total Suspended Solids	3		<3.0		mg/L		3	08-JUL-21
TKN-F-WT	Water							
Batch R5513183								
WG3569169-3 DUP Total Kjeldahl Nitrogen		L2608128-3 0.770	0.730		mg/L	5.3	20	06-JUL-21
WG3569169-2 LCS Total Kjeldahl Nitrogen			98.8		%		75-125	06-JUL-21
WG3569169-1 MB Total Kjeldahl Nitrogen			<0.050		mg/L		0.05	06-JUL-21
WG3569169-4 MS Total Kjeldahl Nitrogen		L2608128-3	92.4		%		70-130	06-JUL-21
VOC-ROU-HS-WT	Water							
Batch R5517259								
WG3572891-4 DUP 1,1,2,2-Tetrachloroetha	ne	WG3572891-3 <0.50	<0.50	RPD-NA	ug/L	N/A	30	12-JUL-21
1,2-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	12-JUL-21

Workorder: L2609138

Report Date: 14-JUL-21

Page 9 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street

Toronto ON M5V 1E3

Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-HS-WT	Water							
Batch R551725 WG3572891-4 DUF	i9 9	WG3572891-3	3					
1,4-Dichlorobenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	12-JUL-21
Benzene		1.38	1.28		ug/L	7.5	30	12-JUL-21
Chloroform		<1.0	<1.0	RPD-NA	ug/L	N/A	30	12-JUL-21
cis-1,2-Dichloroethyle	ne	1.34	1.37		ug/L	2.2	30	12-JUL-21
Dichloromethane		<2.0	<2.0	RPD-NA	ug/L	N/A	30	12-JUL-21
Ethylbenzene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	12-JUL-21
m+p-Xylenes		<0.40	<0.40	RPD-NA	ug/L	N/A	30	12-JUL-21
o-Xylene		<0.30	<0.30	RPD-NA	ug/L	N/A	30	12-JUL-21
Tetrachloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	12-JUL-21
Toluene		<0.40	<0.40	RPD-NA	ug/L	N/A	30	12-JUL-21
trans-1,3-Dichloroprop	pene	<0.30	<0.30	RPD-NA	ug/L	N/A	30	12-JUL-21
Trichloroethylene		<0.50	<0.50	RPD-NA	ug/L	N/A	30	12-JUL-21
WG3572891-1 LCS	;							
1,1,2,2-Tetrachloroeth	nane		80.1		%		70-130	12-JUL-21
1,2-Dichlorobenzene			95.8		%		70-130	12-JUL-21
1,4-Dichlorobenzene			97.8		%		70-130	12-JUL-21
Benzene			92.4		%		70-130	12-JUL-21
Chloroform			94.9		%		70-130	12-JUL-21
cis-1,2-Dichloroethyle	ne		94.8		%		70-130	12-JUL-21
Dichloromethane			87.9		%		70-130	12-JUL-21
Ethylbenzene			100.5		%		70-130	12-JUL-21
m+p-Xylenes			100.1		%		70-130	12-JUL-21
o-Xylene			107.2		%		70-130	12-JUL-21
Tetrachloroethylene			98.4		%		70-130	12-JUL-21
Toluene			98.5		%		70-130	12-JUL-21
trans-1,3-Dichloroprop	pene		82.7		%		70-130	12-JUL-21
Trichloroethylene			96.3		%		70-130	12-JUL-21
WG3572891-2 MB 1,1,2,2-Tetrachloroeth	nane		<0.50		ua/L		0.5	12 -21
1.2-Dichlorobenzene			<0.50		ua/L		0.5	12-111-21
1,4-Dichlorobenzene			<0.50		ug/L		0.5	12-JUI -21
Benzene			<0.50		ug/L		0.5	12
Chloroform			<1.0		ug/L		1	12
cis-1,2-Dichloroethyle	ne		<0.50		5		0.5	

Andrei Miler

Quality Control Report

Workorder: L2609138

Report Date: 14-JUL-21

Page 10 of 11

Client: PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) 74 Berkeley Street Toronto ON M5V 1E3

Contact:

Test Matrix Reference Result Qualifier Units RPD Limit Analyzed VOC-ROU-HS-WT Water R5517259 Batch WG3572891-2 MB cis-1,2-Dichloroethylene < 0.50 0.5 ug/L 12-JUL-21 2 Dichloromethane <2.0 ug/L 12-JUL-21 Ethylbenzene < 0.50 ug/L 0.5 12-JUL-21 m+p-Xylenes < 0.40 0.4 ug/L 12-JUL-21 o-Xylene ug/L 0.3 < 0.30 12-JUL-21 Tetrachloroethylene < 0.50 ug/L 0.5 12-JUL-21 Toluene ug/L 0.4 < 0.40 12-JUL-21 trans-1,3-Dichloropropene < 0.30 ug/L 0.3 12-JUL-21 Trichloroethylene <0.50 ug/L 0.5 12-JUL-21 Surrogate: 1,4-Difluorobenzene 101.0 % 70-130 12-JUL-21 Surrogate: 4-Bromofluorobenzene 97.5 % 70-130 12-JUL-21 WG3572891-5 MS WG3572891-3 1,1,2,2-Tetrachloroethane 79.9 % 50-150 12-JUL-21 1,2-Dichlorobenzene 94.1 % 50-150 12-JUL-21 1,4-Dichlorobenzene 93.9 % 50-150 12-JUL-21 89.4 Benzene % 50-150 12-JUL-21 Chloroform 93.0 % 50-150 12-JUL-21 cis-1,2-Dichloroethylene 92.7 % 50-150 12-JUL-21 Dichloromethane 87.3 % 50-150 12-JUL-21 Ethylbenzene 95.3 % 50-150 12-JUL-21 m+p-Xylenes % 93.1 50-150 12-JUL-21 o-Xylene 101.8 % 50-150 12-JUL-21 Tetrachloroethylene 87.0 % 50-150 12-JUL-21 Toluene 91.6 % 50-150 12-JUL-21 trans-1,3-Dichloropropene 81.5 % 50-150 12-JUL-21 Trichloroethylene 90.5 % 50-150 12-JUL-21 Workorder: L2609138

Report Date: 14-JUL-21

PALMER ENVIRONMENTAL CONSULTING GROUP INC. (Richmond Hill) Client: 74 Berkeley Street Toronto ON M5V 1E3 Andrei Miler

Contact:

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description
J	Duplicate results and limits are expressed in terms of absolute difference.
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.

Hold Time Exceedances:

All test results reported with this submission were conducted within ALS recommended hold times.

ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

COC Number: 20 - 889260 Page of

Canada Toll Free: 1 800 668 9878

and Tr	Contact and company name below will appea	ar on the final report	en yn gwyng a min yw af an orallegelau	Reports / I	Recipients				Turna	round T	ime (TA	() Reque	sted						
	Palmer		Select Report For	mat: NPDF	EXCEL EDD	(DIGITAL)	Ro Ro	utine [R] if	received	by 3pm	M-F - no	surcharges	apply						
Company.	Faller Law	Merge QC/QCI Reports with COA YES INO NA					day [P4] if r	eceived	by 3pm 1			IS BARC	ODELAB	ELHERE					
2hopo:	Anora 11111 Long	2	Compare Result	ts to Criterla on Report -	provide details below if b	ox checked		day [P3] if	received	by 3pm	M-F - 259	6 rush sure 6 ruch sure	charge min charge min	imum imum		- PUTIN P	(ALS u	se only)	
-none.	Company address below will appear on the final	report	select Distribution	n: EMAIL	🗌 MAIL 🔲 F/	٧X		tay [E] if re	eceived t	y3pm №	-F - 100%	6 rush sur	charge min	imum					
Strant	74 Rentraley Str	eet I	Email 1 or Fax	andrei. r	niler ape	cg. ca	Sa	me day [E2]	if receiv	ved by 10a	m M-S-	200% rush	surcharge.	Additional	fees				
City/Province:	Takata Onl	tania	Email 2	ason.cc	le Q Dece	, ca	ma	ay apply to r	ush reque	ests on we	ekends, st	atutory holi	days and n	on-routine	tests				<u>18:590.00</u>
Postal Code:	MSV (LE?	3	Email 3					Date and T	ime Re	quired for	all E&P	'ATs:	<u> </u>	en de la restanció de la composition	dd.r	nin vyc. Henne y charaeth	hisinan ar	1990 Alignetics	*****
nvoice To	Same as Report To	NO		Invoice R	ecipients			newawayini shikili m		For all tes	ts with rus	h TATs req	uested, ple	ase contac	ot your AN	to confirm	availability.		
	Conv of Invoice with Report YES	NO	Select Invoice Dis	stribution: 🔲 E	MAIL 🗌 MAIL 🔲	FAX						<i>ا</i>	Analysis	Reque	st	anterioria			
Company			Email 1 or Fax				LS S		Ind	licate Filte	red (F), Pi	eserved (F) or Filtere	ed and Pre	eserved (I	F/P) below	<u>, .</u>		REC
Contact:			Email 2				<u> </u>	<u>_</u>			╞──┤								
	Project Information		0	il and Gas Require	d Fields (client use	9)	Ā	2			P								SEC
ALS Account # /	Quote # PALMER (RLote	AFE/Cost Center:		PO#		ΙΞ	5			5	\supset						Г	L L C
Job #: 82	2	1	Major/Minor Code:		Routing Code:		181	R.	L '	7-1	2							I	RAC
PO / AFE:			Requisitioner:				L L	G	17	<u>e</u> (R					- 1		1 S	TOL
LSD:			Location:	under seine seine seine seine seine seine seine seine seine seine seine seine seine seine seine seine seine se		an and the state of the state o		3	5	5 5								S IS	SOL
		m_{12}	ALS Contact:		Sampler:		Ш		30	$\delta \mathcal{A}$								L L	HE E
ALS Lab Work	Corder # (ALS use only):	$\mathcal{F}[00]$,AV	h							4		MF	EN EN
ALS Sample #	Sample Identification	and/or Coordinates		Date	Time	Sample Type	Ē	eT										S S	X
(ALS use only)	(This description will	appear on the report)	unineine on anisonistandors mitolo	(dd-mmm-yy)	(hh:mm) Pr	<u> </u>	00	-			+								
	$M_{\rm W} - 100$	2-5		02-07-2	1 10:30	GW	25	\wedge				<u> </u>					<u> </u>		
i, ni		•													<u></u>				$\left - \right ^{2}$
														-					╂╂
					A fa Mala a se A second										:				
			-																
		NO NO NO B C C C C C C C C					<u>.</u>												
	111111111111111111111111111111111111111	-COFC												+					
	L2000		<u></u>		A CARLES AND AND AND AND AND AND AND AND AND AND		<u>.</u>					<u></u>						<u> </u>	
		$(e_1, \dots, e_{n-1}, e_{n-1}, e_{n-1}, e_{n-1}, \dots, e_{n-1}, e_{n-1}, e_{n-1}, \dots, \dots, e_{n-1}, \dots, e_{n-1}, \dots, e_{n-1}, \dots, e_{n-1}, \dots, \dots, e_{n-1}, \dots, \dots, e_{n-1}, \dots, \dots, e_{n-1}, \dots, \dots, e_{n-1}, \dots, \dots, e_{n-1}, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots, \dots,$		ek di daktar	이 사용 가슴 문서 말하			- 1997 (14	198 P.	5, 20 ⁶ 6									+
								на на селот 1 мартика 1 мартика											
<u></u>		in an an an an an an an an an an an an an		l che and cher lines					10 8	i. da		181 84		165.5					
	1	Notes / Specify	Limits for result	evaluation by selectl	ng from drop-down l	elow					SAM	PLE REO	CEIPT D	ETAILS	i (ALS i	ise only)			
Drinkin	g Water (DW) Samples ¹ (client use)		(E	Excel COC only)			Cool	ing Metho	od:		₽``Ş	(ICE)	ICE PA	cks [j froz	en 🏾 🚬	P (00	LING INIT	IATED
Are samples take	n from a Regulated DW System?		Chiga	1 × C	an the		Subr	nission C	ommei	nts iden	ified on	Samplé	Receipt	Notificat	tion:	<u> </u>] Yes		
	es 🙀 No	Janop	Silver	, 1, 2,	ming		Cool	er Custoc	ly Seal	s Intact		YES		Sampl	le Custo	ody Seals	Intact:		ES D NA
Are samples for h	numan consumption/ use?	Se	~ 1	1.201			10		TIAL CO	OLER TE	MPERAT	JRES VC		10	$\mathcal{O}^{\mathbb{N}}$	VALUUUL	EN TEMPE	<u></u>	Ť
Γ YI	ES STATUTE CONTRACTOR			us uge	 A statistical statistic statistical statistical />statistical statistical statisticae statisticae statisticae statisticae statisticae statisticae statisteps statisticae statisticae statisticae statisticae statisti		113	:5					(UDI I	10	0 TOTIOT				1
	SHIPMENT RELEASE (client use)			INITIAL SHUPME	NT RECEPTION (AI	S use only)	Trime		Rocolin	ad by:		-INAL S				ALS US	ie only)	Tim	e: 7~17
Released by:	In Date MA Date AD A	T-74 Time:	Received by:	KAN AN	Date: 2D	12021	12	eval"	Ceceive	su uy.	/	×И	L	Q-f-	-1	12+	T		$\mathcal{O}(\mathcal{N})$
<u> </u>	AVIOUR FURIAL OZ-C	FORMATION DH			HITE - LABORATORY	COPY YELLO	DW - CL	IENT COP	Ϋ́					يند ميليندين مر	, /	1	an francisco and a second	non-surgrinidand	AUG 2020 P
REFER TO BACK	HAGE FOR ALS LOCATIONS AND SAME LING IN	is form LEGIBLY. By the use of this	s form the user ackno	wledges and agrees with	n the Terms and Conditio	ns as specified on th	e back pa	ige of the w	hite - rep	oort copy.					12	M			

1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.