

Hullmark Sun Life (376 Dufferin) LP 474 Wellington Street West Toronto, ON M5V 1E3 File No. 21-199 July 15, 2022

Attention: Charles Arbez

RE: HYDROGEOLOGICAL REVIEW REPORT 340-376R Dufferin Street & 2 Melbourne Avenue, Toronto, Ontario

Grounded Engineering Inc. ("Grounded") is pleased to provide you with this Hydrogeological Review for the site known as 340-376R Dufferin Street & 2 Melbourne Avenue, in Toronto, Ontario.

The following documents are provided as part of this package:

- City of Toronto Hydrogeological Review Summary Form
- Hydrogeological Review Report

As part of the development applications process, the City of Toronto requires that both documents are submitted together for review.

We trust that the information contained with this report is adequate for your present requirements. If we can be of further assistance, please do not hesitate to contact us.

Arman Gelimforoush, MASc, EIT Project Manager

Jason Crowder, Ph.D., P.Eng. Principal

M Toronto

August 2018

HYDROLOGICAL REVIEW SUMMARY

The form is to be completed by the Professional that prepared the Hydrological Review. Use of the form by the City of Toronto is not to be construed as verification of engineering/hydrological content.

Refer to the Terms of Reference, Hydrological Review: Link to Terms of Reference Hydrological Review

For City Staff Use Only:	
Name of ECS Case Manager (Please print)	
Date Review Summary provided to to TW, EM&P	

IF ANY OF THE REQUIREMENTS LISTED BELOW HAVE NOT BEEN INLCUDED IN THE HYDROLOGICAL REVIEW, THE REVIEW WILL BE CONSIDERED INCOMPLETE.

THE GREY SHADED BOXES WILL REQUIRE A CONSISTANCY CHECK BY THE ECS CASE MANAGER.

Summary of Key Information:

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
Site Address	340-376R Dufferin Street & 2 Melbourne Avenue, Toronto, Ontario	Title, i (Exec Sum), 1 (Sec 1)	
Postal Code	M3H 4G5, M6K 3G1 and M6K 1Z8	Title	
Property Owner (on request for comments memo)	Hullmark Sunlife (376 Dufferin) LP	Title, i (Exec Sum), 1 (Sec 1)	
Proposed description of the project (if applicable) (point towers, number of podiums)	Two Towers (North Tower: 25 stories, South Tower: 21 stories) and two buildings (South Midrise: 11 stories and Building B: 6 Stories) resting on 2 levels of underground parking	i (Exec Sum), 1 (Sec 1)	
Land Use (ex. commercial, residential, mixed, institutional, industrial)	Current: Commercial Proposed: Mixed use Commercial/Residential	i (Exec Sum), 1 (Sec 1)	
Number of below grade levels for the proposed structure	Number of below grade levels for the proposed structure Two (2) levels		
HYDROLOGIC	AL REVIEW INFORMATION		
Date Hydrological Review was prepared:	2022-07-15	Title	
Who Performed the Hydrological Review (Consulting Firm)	Grounded Engineering Inc.	Title, i (Exec Sum), 2 (Sec 1)	
Name of Author of Hydrological Review	Jason Crowder, Ph.D., P.Eng.	2 (Sec 1), 13 (Sec 14)	

August 2018

SITE INFORMATION			Review Includes this Information City Staff (Check)
Check the directories on the website for Professional Geoscientists and/or Professional Engineers of Ontario been checked to ensure that the Hydrological Report has been prepared by a qualified person who is a licensed Professional Geoscientist as set out in the Professional Geoscientist Act of Ontario or a Professional Engineer? PEO: <u>Professional Engineers of Ontario</u> APGO: <u>Association of Professional Geoscientists of Ontario</u>	✓ Yes	N/A	
 Has the Hydrological Review been prepared in accordance with all the following: Ontario Water Resources Act Ontario Regulation 387/04 Toronto Municipal Code Chapter 681-Sewers 	✓ Yes	2 (Sec 1)	
Total Volume (L/day) Short Term Discharge of groundwater (construction dewatering) with safety factor included	Caisson Wall Shoring: Groundwater Seepage = 25,000 L/day Design Rainfall = 160,000 L/day Total = 185,000 L/day What safety factor was used? 2.0	li/iii (Exec Sum), 10 (Sec 10)	

August 2018

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
Total Volume (L/day) Short Term Discharge of groundwater (construction dewatering) without safety factor included	Caisson Wall Shoring: Groundwater Seepage = 12,500 L/day Design Rainfall = 160,000 L/day Total = 172,500 L/day	Appendix F	
Total Volume (L/day) Long Term drainage of groundwater (from foundation drainage, weeping tiles, sub slab drainage) with safety factor included If the development is part of a multiple tower complex, include total volume for each separate tower	Caisson Wall Shoring:Groundwater Seepage = 90,000 L/dayDesign Rainfall = 9,000 L/dayTotal = 99,000 L/dayCaisson Shoring with Waterproofed Foundation Walls:Groundwater Seepage = 40,000 L/dayDesign Rainfall = 9,000 L/dayTotal = 49,000 L/dayWaterproofed Foundations:Groundwater Seepage = 0 L/dayDesign Rainfall = 0 L/dayTotal = 0 L/dayWhat safety factor was used?2.0	ii (Exec Sum), 10 (Sec 10)	
List the nearest surface water (river, creek, lake)	The nearest waterbody is Lake Ontario, located approximately 1000 m south of the Property.	3 (Sec 3)	
Lowest basement elevation	82.6 masl – base of excavation 84.73 masl – finished floor elevation	i (Exec Sum), Appendix F	
Foundation elevation	82.6 masl – underside of raft foundation	i (Exec Sum)	

August 2018

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
Ground elevation	93.4 masl	Appendix F	
STUDY AREA MAP			Review Includes this Information City Staff (Check)
Study area map(s) have been included in the report.	√ Yes	Figures 1 & 2	N/A
Study area map(s) been prepared according to the Hydrological Review Terms of Reference.	√ Yes	Figures 1 & 2 3 (Sec 2)	N/A
WATER LEVEL AND WELLS		Page # & Section # of every occurrence in the Review	Review Includes this Information (City Staff Initial)
The groundwater level has been monitored using all wells located on site (within property boundary).	✓ Yes	4-5 (Sec 4 and 5), Figures 2 & 3	

August 2018

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)	
The static water level measurements have been monitored at all monitoring wells for a minimum of 3 months with samples taken every 2 weeks for a minimum of 6 samples. The intent is for the qualified professional to use professional judgement to estimate the seasonally high groundwater level.	✓ Yes	4-5 (Sec 4 and 5)		
All water levels in the wells have been measured with respect to masl.	✓ Yes	5 (Sec 5), Appendix A		
A table of geology/soil stratigraphy for the property has been included.	✓ Yes	i (Exec Sum), 3 (Sec 3)		
GEOLOGY AND PHYSICAL HYDROLOGY		Page # & Section # of every occurrence in the Review	Review Includes this Information (City Staff Initial)	
The review has made reference to the soil materials including thickness, composition and texture, and bedrock environments.	√ Yes	3 (Sec 3)		
Key aquifers and the site's proximity to nearby surface water has been identified.	✓ Yes	3 (Sec 3)	N/A	
PUMP TEST/SLUG TEST/DRAWDOWN ANALYSIS		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)	
A summary of the pumping test data and analysis is included in the review.	A pumping test was not conducted.	6 (Sec 6.1)		

August 2018

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
The pump test been carried out for at least 24 hours if possible. If not, has a slug test been conducted?	A pump test was not conducted. Slug tests were conducted.	6 (Sec 6.2)	
Have the monitoring well(s) have been monitored using digital devices? If yes how frequently?	 ✓ Yes ************ Yes, water level measurements have been taken using a digital water level meter. The frequency of the measurements was every two 	5 (Sec 5)	
If a slug or pump test has been conducted has the static groundwater level been monitored at all monitoring well(s) multiple times to measure recovery? -prior to the slug or pumping test(s)? -post slug or pumping test(s)?	 weeks over the course of a 3 month period. ✓ Yes ✓ Yes ✓ Yes 	5 (Sec 5), 6 (Sec 6.2)	N/A
The above noted slug or pump tests have been included in the report.	√ Yes	6 (Sec 6.2), Appendix B	
WATER QUALITY		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)

August 2018

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
The report includes baseline water quality samples from a laboratory. The water quality must be analyzed for all parameters listed in Tables 1 and 2 of Chapter 681 Sewers of the Toronto Municipal Code (found in Appendix A) and the samples must have to be taken unfiltered within 9 months of the date of submission.	√ Yes	7-8 (Sec 7), Appendix E	
The water quality data templates in Appendix A have been completed for each sample taken for both sanitary/combined and storm sewer limits.	For sanitary discharge- See the sanitary/combined sewer parameter limit template For storm discharge- See the storm sewer parameter limit template	Pg. 11-14 of Hydrological Review Summary	
Qualified professional to list all sample parameters that have violated the Bylaw limits for each sample taken for the sanitary/combined Bylaw limits If there are any sample parameter Exceedances the groundwater can't be discharged as is.	Sanitary Combined Sewer: • No exceedances were observed in the sample	7-8 (Sec 7)	
Qualified professional to list all sample parameters that have violated the Bylaw limits for each sample taken for the storm Bylaw limits. If there are any sample parameter exceedances the groundwater can't be discharged as is.	 Storm Sewer: Total Suspended Solids (Result 28 mg/L; Limit 15 mg/L; RDL 3 mg/L) Total Manganese (Result 0.457 mg/L; Limit 0.05 mg/L; RDL 0.0005 mg/L) 	7-8 (Sec 7)	

August 2018

SITE INFORMATION			Review Includes this Information City Staff (Check)
The water quality samples have been analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and/or Canadian Association for Laboratory Accreditation. List of Canadian accredited laboratories: <u>Standards Council of Canada</u>	✓ Yes	Appendix E	N/A
A chain of custody record for the samples is included with the report.	✓ Yes	Appendix E	
Has the chain of custody reference any filtered sample? If yes, the report has to be amended and re-submitted to include only non-filtered samples.	√ Yes	Appendix E	
List any of the sample parameters that exceed the Bylaw limits with the reporting detection limit (RDL) included.	 Sanitary Combined Sewer: No exceedances were observed in the sample Storm Sewer: Total Suspended Solids (Result 28 mg/L; Limit 15 mg/L; RDL 3 mg/L) Total Manganese (Result 0.457 mg/L; Limit 0.05 mg/L; RDL 0.0005 mg/L) 	7-8 (Sec 7), Appendix E	
A true copy of the Certificate of Analysis report, is included with the report.	√ Yes	Appendix E	
EVALUATION OF IMPACT		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)

August 2018

HYDROLOGICAL REVIEW SUMMARY

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
Does the report recommend a back-up system or relief safety valve(s)?	✓ Yes	9 (Sec 9)	
Does the associated Geotechnical report recommend a back-up system or relief safety valve(s)?	✓ Yes	14 (Sec 3.5) of Geotech Report	
The taking and discharging of groundwater on site has been analyzed to ensure that no negative impacts will occur to: the City sewage works in terms of quality and quantity (including existing infrastructure), the natural environment, and settlement issues.	√ Yes	12-13 (Sec 11)	N/A
Has it been determined that there will be a negative impact to the natural environment, City sewage works, or surrounding properties has the study identified the	⊖ No	12-14 (Sec 11-12)	N/A
following: the extent of the negative impact, the detail of the precondition state of all the infrastructure, City sewage works, and natural environment within the effected zone and the proposed remediation and monitoring plan?	If yes, identify impact:		

Summary of Additional Information and Key Items (if applicable):

August 2018

HYDROLOGICAL REVIEW SUMMARY

<u>Appendix A:</u>

SANITARY/COMBINED

Sample Location: BH117

Inorganics		Sample Result (mg/L)	Sample Result with upper RDL included (mg/L)	
Parameter	<u>mg/L</u>			<u>ug/L</u>
BOD	300	<3	<3 (3)	300,000
Fluoride	10	<0.1	<0.1 (0.1)	10,000
TKN	100	0.540	0.540 (0.5)	100,000
рН	6.0 - 11.5	7.45	7.45 (0.1)	6.0 - 11.5
Phenolics 4AAP	1	<0.001	<0.001 (0.001)	1,000
TSS	350	28	28 (3)	350,000
Total Cyanide	2	<0.002	<0.002 (0.002)	2,000
Metals				
Chromium Hexavalent	2	<0.0005	<0.0005 (0.0005)	2,000
Mercury	0.01	<0.000005	<0.000005 (0.000005)	10
Total Aluminum	50	0.778	0.778 (0.01)	50,000
Total Antimony	5	0.00013	0.00013 (0.0001)	5,000
Total Arsenic	1	0.00063	0.00063 (0.0001)	1,000
Total Cadmium	0.7	0.000038	0.000038 (0.00001)	700
Total Chromium	4	0.00209	0.00209 (0.00008)	4,000
Total Cobalt	5	0.00196	0.00196 (0.0001)	5,000
Total Copper	2	0.0026	0.0026 (0.001)	2,000
Total Lead	1	0.00114	0.00114 (0.0001)	1,000
Total Manganese	5	0.457	0.457 (0.0005)	5,000
Total Molybdenum	5	0.000708	0.000708 (0.00005)	5,000
Total Nickel	2	0.00383	0.00383 (0.0005)	2,000
Total Phosphorus	10	0.0156	0.0156 (0.003)	10,000
Total Selenium	1	0.00494	0.00494 (0.00005)	1,000
Total Silver	5	<0.00005	<0.00005 (0.00005)	5,000
Total Tin	5	0.00017	0.00017 (0.0001)	5,000
Total Titanium	5	0.0404	0.0404 (0.0003)	5,000
Total Zinc	2	0.0095	0.0095 (0.003)	2,000
Petroleum Hydrocarbons				
Animal/Vegetable Oil & Grease	150	<5	<5 (5)	150,000
Mineral/Synthetic Oil & Grease	15	<2.5	<2.5 (2.5)	15,000

August 2018

Volatile Organics		Sample Result (mg/L)	Sample Result with upper RDL included (mg/L)	
Parameter	<u>mg/L</u>			<u>ug/L</u>
Benzene	0.01	<0.5	<0.5 (0.5)	10
Chloroform	0.04	<1	<1 (1)	40
1,2-Dichlorobenzene	0.05	<0.5	<0.5 (0.5)	50
1,4-Dichlorobenzene	0.08	<0.5	<0.5 (0.5)	80
Cis-1,2-Dichloroethylene	4	<0.5	<0.5 (0.5)	4,000
Trans-1,3-Dichloropropylene	0.14	<0.5	<0.5 (0.5)	140
Ethyl Benzene	0.16	<0.5	<0.5 (0.5)	160
Methylene Chloride	2	<2	<2 (0.0005)	2,000
1,1,2,2-Tetrachloroethane	1.4	<0.5	<0.5 (0.5)	1,400
Tetrachloroethylene	1	<0.5	<0.5 (0.5)	1,000
Toluene	0.016	<0.5	<0.5 (0.5)	16
Trichloroethylene	0.4	<0.5	<0.5 (0.5)	400
Total Xylenes	1.4	<1.1	<1.1 (1.1)	1,400
Semi-Volatile Organics				
Di-n-butyl Phthalate	0.08	<1	<1 (1)	80
Bis (2-ethylhexyl) Phthalate	0.012	<2	<2 (2)	12
3,3'-Dichlorobenzidine	0.002	<0.4	<0.4 (0.4)	2
Pentachlorophenol	0.005	<0.5	<0.5 (0.5)	5
Total PAHs	0.005	<1.7	<1.7 (1.7)	5
Misc Parameters				
Nonylphenols	0.02	<1	<1 (1)	20
Nonylphenol Ethoxylates	0.2	<2	<2 (2)	200

Sample Collected: November 1, 2021

Temperature: 9.2° C

August 2018

HYDROLOGICAL REVIEW SUMMARY

STORM

Sample Location: BH117

Inorganics		Sample Result (mg/L)	Sample Result with upper RDL included (mg/L)	
Parameter	mg/L			ug/L
рН	6.0 - 9.5	7.45	7.45 (0.1)	
BOD	15	<3	<3 (3)	15,000
Phenolics 4AAP	0.008	<0.001	<0.001 (0.001)	8
TSS	15	28	28 (3)	15,000
Total Cyanide	0.02	<0.002	<0.002 (0.002)	20
Metals				
Total Arsenic	0.02	0.00063	0.00063 (0.0001)	20
Total Cadmium	0.008	0.000038	0.000038 (0.00001)	8
Total Chromium	0.08	0.00209	0.00209 (0.00008)	80
Chromium Hexavalent	0.04	<0.0005	<0.0005 (0.0005)	40
Total Copper	0.04	0.0026	0.0026 (0.001)	40
Total Lead	0.12	0.00114	0.00114 (0.0001)	120
Total Manganese	0.05	0.457	0.457 (0.0005)	50
Total Mercury	0.0004	<0.000005	<0.000005 (0.000005)	0.4
Total Nickel	0.08	0.00383	0.00383 (0.0005)	80
Total Phosphorus	0.4	0.0156	0.0156 (0.003)	400
Total Selenium	0.02	0.00494	0.00494 (0.00005)	20
Total Silver	0.12	<0.00005	<0.00005 (0.00005)	120
Total Zinc	0.04	0.0095	0.0095 (0.003)	40
Microbiology				
E.coli	200	0		200,000
Volatile Organics				
Parameter	mg/L			ug/L
Benzene	0.002	<0.5	<0.5 (0.5)	2
Chloroform	0.002	<1	<1 (1)	2
1,2-Dichlorobenzene	0.0056	<0.5	<0.5 (0.5)	6
1,4-Dichlorobenzene	0.0068	<0.5	<0.5 (0.5)	7
Cis-1,2-Dichloroethylene	0.0056	<0.5	<0.5 (0.5)	6
Trans-1,3-Dichloropropylene	0.0056	<0.5	<0.5 (0.5)	6
Ethyl Benzene	0.002	<0.5	<0.5 (0.5)	2
Methylene Chloride	0.0052	<2	<2 (0.0005)	5
1,1,2,2-Tetrachloroethane	0.017	<0.5	<0.5 (0.5)	17
Tetrachloroethylene	0.0044	<0.5	<0.5 (0.5)	4
Toluene	0.002	<0.5	<0.5 (0.5)	2
Trichloroethylene	0.0076	<0.5	<0.5 (0.5)	8
Total Xylenes	0.0044	<1.1	<1.1 (1.1)	4

August 2018

HYDROLOGICAL REVIEW SUMMARY

Semi-Volatile Organics		Sample Result (mg/L)	Sample Result with upper RDL included (mg/L)	
Di-n-butyl Phthalate	0.015	<1	<1 (1)	5
Bis (2-ethylhexyl) Phthalate	0.0088	<2	<2 (2)	8.8
3,3'-Dichlorobenzidine	0.0008	<0.4	<0.4 (0.4)	0.8
Pentachlorophenol	0.002	<0.5	<0.5 (0.5)	2
Total PAHs	0.002	<1.7	<1.7 (1.7)	2
PCBs	0.0004	<0.04	<0.04 (0.04)	0.4
Misc Parameters				
Nonylphenols	0.001	<1	<1 (1)	1
Nonylphenol Ethoxylates	0.01	<2	<2 (2)	10

Sample Collected: November 1, 2021

Temperature: 9.2° C

Consulting Firm that prepared Hydrological Report:

Qualified Professional who completed the report summary:

Print Name

Qualified Professional who completed the report summary:

Signature

Date & Stamp

HYDROGEOLOGICAL REVIEW REPORT

340-376R Dufferin Street & 2 Melbourne Avenue Toronto, Ontario PREPARED FOR: Hullmark Sun Life (376 Dufferin) LP 474 Wellington Street West Toronto, ON M5V 1E3

ATTENTION: Charles Arbez

Grounded Engineering Inc. File No. 21-199 Issued July 15, 2022

Executive Summary

Grounded Engineering Inc. (Grounded) was retained by Hullmark Sun Life (376 Dufferin) LP to conduct a Hydrogeological Review for the proposed redevelopment of 340-376R Dufferin Street & 2 Melbourne Avenue in Toronto, Ontario (site). The conclusions of the investigation are summarized as follows:

Development Information

Current Development					
	v Grade Levels				
Development Phase	Above Grade	Lowest Finished Floor		Approximate	
	Levels	Level #	Depth (m)	Elevation (masl)	Base of Footings (masl)
340 Dufferin Street & 2 Melbourne Avenue	1 to 2	0 to 1*	Unknown	90.4	Unknown
360-376R Dufferin Street	1 to 2	0 to 1*	υπκποψη	90.7	GIRIOWI

*Buildings have partial basement

Proposed Development

			Below Grade Levels				
Development		Above Grade		Lowest Finished Floor		Approximate	
Phase		Levels	Level #	Depth (m)	Elevation (masl)	Base of Footings (masl)	
	North Tower	25	2		84.73	82.60**	
	South Tower	21		7.8*			
	Building A	11					
	Building B	6					

*Depth calculated from Level 1 proposed grade

**Underside of raft foundation

Site Conditions

Site Stratigraphy				
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)
Earth Fill	Aquifer	0.0 - 3.1	93.4 - 90.3	1.0 x 10 ^{-6***}
Sand	Aquifer	3.1 - 9.2	90.3 - 84.2	4.8 x 10 ^{-6*}
Silt Till	Aquifer	9.2 - 13.1	84.2 - 80.2	1.0 x 10 ^{-6***}
Weathered Bedrock	N/A	13.1 - 14.6	80.2 - 78.8	1.0 x 10 ^{-6***}
Sound Bedrock	N/A	14.6 and below	78.8 and below	6.8 x 10 ^{-7*}

*Indicates conductivity was calculated by Slug Test

**Indicates conductivity was estimated using grain size analysis

***Indicates conductivity was estimated using typical published values from Freeze and Cherry (1979)

Maximum Groundwater Elevation		
Monitoring Well ID	Depth Below Grade (m)	Elevation (masl)
BH101	5.1	88.1
BH102	Dry	Dry
BH103-S	2.8	87.6
BH103-D	2.5	87.9
BH104	5.2	88.1
BH105	6.0	87.3
BH106	4.5	88.7
BH107	2.2	88.5
BH108	3.5	87.9
BH110	3.5	87.9
BH111	5.5	87.9
BH117	5.0	88.3
EXP-BH1	5.5	88.0
EXP-BH3	5.2	88.1
EXP-BH5	4.6	88.6
EXP-BH6	Dry	Dry
EXP-TH101	5.1	88.4
EXP-TH102	4.8	88.7

Groundwater Qualit	у			
Sample ID	Sample Date	Sample Expiry Date	City of Toronto Storm Sewer Limits	City of Toronto Sanitary and Combined Sewer Limits
SEW-UF-BH117	2021-11-01	2022-08-01	Exceeds	Meets

Groundwater Control

Stored Groundwater (pre-excavation/dewatering)						
Volume of	Volume of Excavation Below	Volume of Sto	red Groundwater	Volume of Available Groundwater		
Excavation (m ³) Water Table (m ³)	(m³)	(L)	(m³)	(L)		
72,960	42,880	12,000	12,000,000	9,700	9,700,000	

	Short	Term (Constru	ction) Groundwa	ater Quantity	- Safety Factor of	2 Used
Scenario	Groundwater Seepage		Design Rainfall Event (25mm)		Total Daily Water Takings	
	L/day	L/min	L/day	L/min	L/day	L/min
Caisson Wall Shoring	25,000	17.4	160,000	111.1	185,000	128.5

	Long Term (Post-Construction) Groundwater Quantity – Safety Factor of 2 Used						
Scenario	Groundwater Seepage		Infiltration Design Rainfall Event (25mm)		Total Daily Water Takings		
	L/day	L/min	L/day	L/min	L/day	L/min	
Caisson Wall Shoring	90,000	62.5	9,000	6.3	99,000	68.8	
Caisson Wall Shoring with Waterproofed Foundation Walls	40,000	27.8	9,000	6.3	49,000	34.0	
Fully Waterproofed	0	0.0	0	0.0	0	0.0	

Scenario	Zone of Influence (m)	Settlement (mm)
Caisson Wall Shoring	0	0
Caisson Wall Shoring with Waterproofed Walls	0	0
Fully Waterproofed	0	0

	Scenario				
Regulatory Requirements	Caisson Wall Shoring	Caisson Wall Shoring with Waterproofed Foundation Walls	Fully Waterproofed		
Environmental Activity and Sector Registry (EASR) Posting	Required	NA*	NA*		
Short Term Permit to Take Water (PTTW)	Not Required	NA*	NA*		
Long Term Permit to Take Water (PTTW)	Required	Not Required	Not Required		
Short Term Discharge Agreement City of Toronto	Required	NA*	NA*		
Long Term Discharge Agreement City of Toronto	Required	Not Required	Not Required		

*Not applicable. Regulatory requirement applies to short term conditions only, whereas proposed scenario applies to long term conditions.

TABLE OF CONTENTS

1	INTRODUCTION1						
2	STUDY AREA MAP						
3	GEOLOGY AND PHYSICAL HYDROGEOLOGY						
4	MONITORING WELL INFORMATION4						
5	GROUNDWATER ELEVATIONS						
6	AQUIFER TESTING 6 6.1 PUMP TEST 6 6.2 SINGLE WELL RESPONSE TEST (SLUG TEST) 6 6.3 SOIL GRAIN SIZE DISTRIBUTION 7 6.4 LITERATURE 8						
7	WATER QUALITY						
8	PROPOSED CONSTRUCTION METHOD						
9	PRIVATE WATER DRAINAGE SYSTEM (PWDS)10						
10	GROUNDWATER EXTRACTION AND DISCHARGE						
11	EVALUATION OF IMPACT 12 11.1 ZONE OF INFLUENCE (ZOI) 12 11.2 LAND STABILITY 13 11.3 CITY'S SEWAGE WORKS 13 11.4 NATURAL ENVIRONMENT 14 11.5 LOCAL DRINKING WATER WELLS 14 11.6 CONTAMINATION SOURCE 14						
12	PROPOSED MITIGATION MEASURES AND MONITORING PLAN14						
13 14	LIMITATIONS						
. –							

Hydrogeological Review Report 340-376R Dufferin Street & 2 Melbourne Avenue, Toronto, Ontario July 15, 2022

FIGURES

Figure 1 – Study Area Map Figure 2 – Borehole and Monitoring Well Location Plan

Figure 3 – Hydrological Cross-Section

APPENDICES

- Appendix A Borehole Logs
- Appendix B Aquifer Response Tests
- Appendix C Grain Size Analysis
- Appendix D HydrogeoSieveXL Data
- Appendix E Laboratory Certificate of Analysis
- Appendix F Borehole Logs by EXP
- Appendix G Finite Element Model
- Appendix H Dewatering Calculations

Hullmark Sun Life (376 Dufferin) LP has retained Grounded Engineering Inc. ("Grounded") to provide hydrogeological engineering design advice for their proposed development at 340-376R Dufferin Street & 2 Melbourne Avenue, in Toronto, Ontario.

Property Information	
Location of Property	340-376R Dufferin Street & 2 Melbourne Avenue, Toronto, Ontario M3H 4G5, M6K 3G1 and M6K 1Z8
Ownership of Property	Hullmark Developments
Property Dimensions (m)	128 x 59
Property Area (m ²)	7,445

Existing Development	
Number of Building Structures	Four (4) 1 to 2 storey buildings surrounding a common courtyard
Number of Above Grade Levels	1 to 2
Number of Underground Levels	0 to 1*
Sub-Grade Depth of Development (m)	Unknown
Sub-Grade Area (m ²)	Unknown
Land Use Classification	Commercial
*340 and 360 Dufferin St have partial baseme	nts
Proposed Development	
Number of Building Structures	Two (2) towers: North Tower and South Tower, two (2) buildings: Building A, Building B
Number of Above Grade Levels	North Tower: 25 stories, South Tower: 21 stories, South Midrise: 11 stories, Building B: 6 stories
	Existing heritage building at 350 Dufferin Street will remain.
Number of Underground Levels	Two (2) common underground parking levels
Sub-Grade Depth of Development (m)	7.8
Sub-Grade Area (m²)	6,430

Qualified Person and Hydrogeological Review Information						
Qualified Person	Jason Crowder, Ph.D., P.Eng.					
Consulting Firm	Grounded Engineering Inc.					
Date of Hydrogeological Review	July 15, 2022					
	Review of MECP Water Well Records for the area					
	 Review of geological information for the area 					
	 Review of topographic information for the area 					
	 Advancement of 11 boreholes to a maximum depth of 15.8 m instrumented with monitoring wells by Grounded, one of which is instrumented with a set of nested monitoring wells 103-S and 103-D in October 2021 					
	 Advancement of 6 boreholes to a maximum depth of 14.5 m by EXP, 4 of which were instrumented with monitoring wells in January/February 2016 					
Scope of Work	 Advancement of 4 test holes to a maximum depth of 7 m by EXP, 2 of which were instrumented with monitoring wells in July 2016 					
	 Advancement of 2 test holes to a maximum depth of 2.7 m by EXP, in December 2014 					
	 Completion of slug tests in all available monitoring wells 					
	 Bi-weekly groundwater elevation monitoring for a period of three (3) months 					
	 Groundwater sampling and analysis to the City of Toronto Sewer Use Limits 					
	 Assessment of groundwater controls and potential impacts 					
	 Report preparation in accordance with Ontario Water Resources Act, Ontario Regulation 387/04 and Toronto Municipal Code Chapter 681 					

General Hydrogeological Characterization					
Property Topography	The site has an approximate ground surface elevation of 93 - 94 masl.				
Local Physiographic Features	Bevelled Till Plains				
Regional Physiographic Features	The West St Lawrence Lowland consists of a limestone plain (elevation 200–250 masl) that is separated by a broad, shale lowland from a broader dolomite and limestone plateau west of Lake Ontario. This plateau is bounded by the Niagara Escarpment. From the escarpment the plateau slopes gently southwest to lakes Huron and Erie (elevation 173 masl). Glaciation has mantled this region with several layers of glacial till (i.e., an				

General Hydrogeological Characterization						
	unsorted mixture of clay, sand, etc.), the youngest forming extensive, undulating till plains, often enclosing rolling drumlin fields.					
Watershed	The site is located within the Lake Ontario Waterfront. Watershed. Locally, groundwater is anticipated to flow south towards Lake Ontario.					
Surface Drainage	Surface water is expected to flow towards municipal catch basins located adjacent to the site, via Dufferin Street to the East and Melbourne Avenue to the south.					

2 Study Area Map

A map has been enclosed which shows the following information:

- All monitoring wells identified on site
- All monitoring wells identified off site within the study area
- All boreholes identified on site
- All buildings identified on site and within the study area
- The property boundaries of the site
- Any watercourses and drainage features within the study area.

3 Geology and Physical Hydrogeology

The site stratigraphy, including soil materials, composition and texture are presented in detail on the borehole logs in Appendix A. A summary of stratigraphic units that were encountered at the site are as follows:

Site Stratigraphy							
Stratum/Formation	Aquifer or Aquitard	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)			
Earth Fill	Aquifer	0.0 - 3.1	93.4 - 90.3	1.0 x 10 ^{-6***}			
Sand	Aquifer	3.1 - 13.1	90.3 - 80.2	1.5 x 10 ^{-5*}			
Silt Till	Aquifer	9.2 - 13.1	84.2 - 80.2	1.0 x 10 ^{-6***}			

*Indicates conductivity was calculated by Slug Test

**Indicates conductivity was estimated using grain size analysis

***Indicates conductivity was estimated using typical published values from Freeze and Cherry (1979)

Bedrock			
Stratum	Depth Range (mbgs)	Elevation Range (masl)	Hydraulic Conductivity (m/s)

Bedrock			
Weathered Bedrock	13.1 - 14.6	80.2 - 78.8	1.0 x 10 ^{-6***}
Sound Bedrock	14.6 and below	78.8 and below	6.8 x 10 ^{-7*}

*Indicates conductivity was calculated by Slug Test

***Indicates conductivity was estimated using typical published values from Freeze and Cherry (1979)

Surface Water							
Surface Water Body	Distance from site (m)	Hydraulically Connected to Property (yes/no)					
Lake Ontario	1,000	No					

4 Monitoring Well Information

Consultant	Well ID	Well Diameter (mm)	Ground Surface (masl)	Top of Screen (masl)	Bottom of Screen (masl)	Screened Geological Unit
	BH101	38	93.2*	89.6	86.5	Sand
-	BH102	50	93.1*	91.9	90.3	Fill
-	BH103-S	38	90.4*	88.9	85.9	Sand
-	BH103-D	38	90.4*	85.5	82.5	Sand/Silt Till
-	BH104	50	93.3	81.1	78.1	Silt Till/Shale
-	BH105	50	93.3	80.5	77.5	Silt Till/Shale
-	BH106	38	93.3*	85.7	82.7	Sand/Silt Till
- Grounded	BH107	38	90.7*	89.2	86.1	Sand
	BH108	38	91.4*	88.9	85.9	Sand
-	BH110	38	91.4*	88.9	85.9	Sand
-	BH111	50	93.4	80.7	77.7	Silt Till/Shale
-	BH117	50	93.3	88.8	85.7	Sand
	EXP-BH1	_**	93.5	88.9	85.9	Sand
-	EXP-BH3	_**	93.3	88.7	85.7	Sand
EXP	EXP-BH5	_**	93.2	89.0	86.2	Sand
-	EXP-BH6	_**	91.3	89.8	88.3	Sand
-	EXP-TH101	_**	93.5	90.1	87.1	Sand

Consultant	Well ID	Well Diameter (mm)	Ground Surface (masl)	Top of Screen (masl)	Bottom of Screen (masl)	Screened Geological Unit
	EXP-TH102	_**	93.5	90.1	87.1	Sand

*Interior wells, advanced from top of basement slab

**Unknown

Note: EXP Wells EXP-BH1, EXP BH3, EXP-TH101, and EXP-TH102 were not located. Well construction details taken from previous consultant's reports and logs.

5 Groundwater Elevations

Well	Groundwater Elevation (masl)														
ID	Feb 08/16	Feb 10/16	July 05/16	July 06/16	Oct 26/21	Oct 27/21	Oct 28/21	Oct 29/21	Nov 4/21	Nov 12/21	Nov 16/21	Nov 26/21	Dec 10/21	Dec 23/21	Jan 07/22
BH101	-	-	-	-	-	88.1	-	-	-	88.1	-	88.1	88.1	88.1	88.1
BH102	-	-	-	-	-	DRY	-	-	-	DRY	-	DRY	DRY	DRY	DRY
BH103 -S	-	-	-	-	87.5	-	-	-	87.6	87.6	87.6	87.6	87.5	87.6	87.6
BH103 -D	-	-	-	-	87.6	-	-	-	87.6	87.9	87.6	87.6	87.5	87.6	87.6
BH104	-	-	-	-	-	-	-	87.8	88.0	88.0	88.1	88.1	88.1	88.1	88.1
BH105	-	-	-	-	87.1	-	87.1	-	86.1	86.6	86.9	87.0	87.3	87.3	87.2
BH106	-	-	-	-	-	-	88.7	-	-	88.7	-	88.7	88.7	88.7	88.7
BH107	-	-	-	-	88.5	-	-	-	88.5	88.5	88.4	88.5	88.5	88.5	88.5
BH108	-	-	-	-	87.9	-	-	-	87.8	87.7	87.8	87.8	87.8	87.8	87.8
BH110	-	-	-	-	87.9	-	-	-	87.9	87.8	87.8	87.8	87.8	87.8	87.8
BH111	-	-	-	-	87.9	-	87.7	-	87.8	87.8	87.8	87.8	87.8	87.8	87.8
BH117	-	-	-	-	-	-	-	88.1	88.1	88.0	88.3	88.0	88.0	88.1	88.0
EXP- BH1*	88.0	87.9	-	-	-	-	-	-	-	-	-	-	-	-	-
EXP- BH3*	88.1	88.1	-	-	-	-	-	-	-	-	-	-	-	-	-
EXP- BH5	88.2	88.2	-	-	88.4	-	-	-	88.4	-	88.6	-	-	88.4	
EXP- BH6	-	DRY	-	-	DRY	-	-	-	-	DRY	DRY	DRY	-	DRY	
EXP- TH101 *	-	-	88.4	88.4	-	-	-	-	-	-	-	-	-	-	-
EXP- TH102 *	-	-	88.7	88.7	-	-	-	-	-	-	-	-	-	-	-

*EXP Wells EXP-BH1, EXP BH3, EXP-TH101, and EXP-TH102 were not located. Water levels shown in table for these wells were collected as part of previous consultant's investigation.

For basement wall design purposes, the groundwater table is at Elev. $88.7\pm$ m in the sand unit. This deposit has a very high permeability and will produce free flowing water when penetrated.

There is also water within discrete fractures in the bedrock, and infiltrated storm water perched in the earth fill. Groundwater levels fluctuate with time depending on the amount of precipitation and surface runoff and may be influenced by known or unknown dewatering activities at nearby sites.

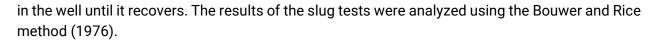
Per the City of Toronto, Toronto Water Infrastructure Management's Foundation Drainage Policy (November 1, 2021), long-term discharge of foundation drainage for new developments to the City's sanitary sewer system will not be permitted. A temporary, emergency foundation drainage connection to the City's sewer systems **may** be granted if the lowest elevation of any proposed structure is higher than the Maximum Anticipated Groundwater Level at the site.

The MAGWL was determined based on the following equation:

Maximum Anticipated GWL = Peak Static GWL Observed + Fluctuation Allowance

Based on the available groundwater elevation measured for the subject site, the Peak Static GWL Observed was at Elev. 88.7 m at BH 106 from October 2021 to January 2022. The Fluctuation Allowance for October (maximum fluctuation allowance between October to January), based on the Option 1 - Table 1 approach, is 2.8 m. Therefore, the MAGWL for the site is Elev. 91.5 m.

As the proposed basement protrusion elevation extends below the observed maximum groundwater level at the Property, the elevation of the lowest structure is also below the determined MAGWL. As such, long term discharge of groundwater to the City's sewer systems is unlikely to be permitted. Pre-consultation with Toronto Water is encouraged to determine the feasibility for a Long-Term Storm/Sanitary Discharge Exemption.


6 Aquifer Testing

6.1 Pump Test

A pump test was not completed at this site. Please note however that in situ single well response tests were completed in select monitoring wells installed on site.

6.2 Single Well Response Test (Slug Test)

The hydraulic conductivities from the monitoring wells were determined based on slug tests (single-well response tests). These tests involve rapid removal of water or addition of a "slug" which displaces a known volume of water from a single well, and then monitoring the water level

Well ID	Well Screen Elevation (masl)	Screened Geological Unit	Hydraulic Conductivity (m/s)
BH103-D	85.5 - 82.5	Sand	1.5 x 10 ⁻⁶
BH104	81.1 - 78.1	Silt Till/Bedrock	6.9 x 10 ⁻⁷
BH105	80.5 - 77.5	Silt Till/Bedrock	2.9 x 10⁻ ⁸
BH106	85.7 - 82.7	Sand/Silt Till	4.8 x 10 ⁻⁶
BH108	88.9 - 85.9	Sand	7.2 x 10 ⁻⁷
BH110	88.9 - 85.9	Sand	1.7 x 10 ⁻⁶
BH111	80.7 - 77.7	Silt Till/Bedrock	1.3 x 10 ⁻⁷
BH117	88.8 - 85.7	Sand	3.9 x 10 ⁻⁶

The hydraulic properties of the strata applicable to the site are as follows:

6.3 Soil Grain Size Distribution

The hydraulic conductivities of various soil types can also be estimated from grain size analyses. An assessment of the grain sizes was conducted using the excel-based tool, HydrogeoSieve XL (*HydrogeoSieve XL ver.2.2, J.F. Devlin, University of Kansas, 2015*). HydrogeoSieve XL compares the results of the grain size analyses against fifteen (15) different analytical methods.

Given our experience in the area as well as published literature, some of the geometric means provided for the soil were biased low by one or more methods. In these instances, the values determined by these methods were excluded from the mean. The table below illustrates the hydraulic conductivity values estimated from the mean of the analytical methods where the soil met the applicable analysis criteria.

Sample ID	Soil Description	Applicable Analysis Methods	Hydraulic Conductivity (m/s)
BH101-SS7B	Silty Sand	Alyamani and Sen, Barr, Sauerbrei, Krumbein and Monk	9.3 x 10 ⁻⁶
BH101-SS4	Sand	Alyamani and Sen, Barr, Sauerbrei, Krumbein and Monk	1.5 x 10⁻⁵
BH103-SS5	Sand	Alyamani and Sen, Barr, Sauerbrei, Krumbein and Monk	7.1 x 10 ⁻⁶
BH105-SS9	Sand and Silt Till	Alyamani and Sen, Barr, Sauerbrei, Krumbein and Monk	1.0 x 10 ⁻⁶
BH106-SS8	Sand	Alyamani and Sen, Barr, Sauerbrei, Krumbein and Monk, Zunker	1.0 x 10⁻⁵
BH107-SS5	Silty Sand	Alyamani and Sen, Barr, Sauerbrei, Krumbein and Monk	7.1 x 10 ⁻⁶
BH108-SS5	Silty Sand	Alyamani and Sen, Barr, Sauerbrei, Krumbein and Monk	1.3 x 10 ⁻⁶
BH110-SS6 Sand and Silt Alyam		Alyamani and Sen, Barr, Sauerbrei, Krumbein and Monk	2.5 x 10⁻⁵

Sample ID	Soil Description	Applicable Analysis Methods	Hydraulic Conductivity (m/s)
BH111-SS9	Sand and Silt Till	Alyamani and Sen, Barr, Sauerbrei, Krumbein and Monk	2.8 x 10 ⁻⁷

The results of the analyses are presented in Appendix D.

6.4 Literature

According to Freeze and Cherry (1979), the typical hydraulic conductivity of the strata investigated at the site are:

Stratum/Formation	Hydraulic Conductivity (m/s)
Earth Fill	10 ⁻² to 10 ⁻⁶
Sands	10 ⁻² to 10 ⁻⁷
Silts	10 ⁻⁵ to 10 ⁻⁹
Glacial Tills	10 ⁻⁶ to 10 ⁻¹²
Bedrock (Shale)	10 ⁻⁶ to 10 ⁻¹³

7 Water Quality

One (1) unfiltered groundwater sample was collected and analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and or Canadian Association for Laboratory Accreditation.

The sample was collected directly from monitoring well BH117 on November 1, 2021. The sample was analyzed for the following parameters:

- City of Toronto Municipal Code Chapter 681 Table 1 Limits for Sanitary and Combined Sewers Discharge
- City of Toronto Municipal Code Chapter 681 Table 2 Limits for Storm Sewer Discharge

The groundwater sample **exceeded** the **Limits for Storm Sewer Discharge** for the following parameters:

- Total Suspended Solids (Limit 15 mg/L, Result 28 mg/L)
- Manganese (Mn)- Total (Limit 0.05 mg/L, Result 0.457 mg/L)

The groundwater sample **met** the **Limits for Sanitary and Combined Sewer Discharge** for all parameters analyzed.

A true copy of the analysis report, Certificate of Analysis and a chain of custody record for the sample are enclosed.

For design purposes, the stabilized groundwater table is at about Elev. 88.7± m. The water table is present in all of the native soil units. The lowest (P2) FFE is at about Elev. 84.73± m. Therefore,

- Foundation excavations will extend below the prevailing groundwater table; and
- Foundation excavations will penetrate wet sands, which will yield free-flowing water.

The proposed shoring at the site must consist of the following:

• A continuous interlocking caisson wall with filler caissons extending into sound bedrock which will act as a cut off layer.

At the time of this report, the shoring design has yet to be finalized. A separate geotechnical engineering report has been prepared by Grounded Engineering Inc. for this site which outlines the proposed construction, shoring and foundation methodology in greater detail.

Prior to excavation, positive dewatering to lower the groundwater table will be required to facilitate construction as well as to maintain the integrity of the subgrade for foundation and slabon-grade support. The water level must be kept at least 1.2 m below the lowest excavation elevation during construction. Failure to dewater prior to excavation will result in unrecoverable disturbance of the subgrade, which will render advice provided for undisturbed subgrade conditions inapplicable. Dewatering of the bedrock is not required. Dewatering will take some time to accomplish prior to the start of excavation. Stored water within the excavation will need to be considered prior to excavation/dewatering.

It is recommended that a professional dewatering contractor be consulted to review the subsurface conditions and to design a site-specific dewatering system. It is the dewatering contractor's responsibility to assess the factual data and to provide recommendations on dewatering system requirements.

The proposed structures may consist of the following scenarios:

- Drained foundations, consisting of perimeter drainage and a sub-slab drainage system
- Waterproofed foundation walls and a sub-slab drainage system
- Fully waterproofed foundation walls and waterproofed foundations (leak-tight)

Based on previous experience in the area, waterproofed foundation walls and sub-slab drainage system is recommended for the proposed structure.

Also, per the City of Toronto, Toronto Water Infrastructure Management's Foundation Drainage Policy (November 1, 2021), long-term discharge of groundwater to the City's sewer systems is unlikely to be permitted. Pre-consultation with Toronto Water is encouraged to determine the feasibility for a Long-Term Storm/Sanitary Discharge Exemption, as applicable.

The City of Toronto will require Discharge Agreements in the short and long terms, if any water is to be discharged to the storm or sanitary sewers. It should be noted that securing a permit to take water on a permanent basis may not be supported by regulatory agencies.

9 Private Water Drainage System (PWDS)

If the proposed development consists of drained foundations, then a private water drainage system will be required. The total sub floor drain area will be approximately 6,450 m² based on the drawings which have been provided.

If the development is designed with a private water drainage system, the drainage system is a critical structural element since it keeps water pressure from acting on the basement walls and floor slab. As such, the sump that ensures the performance of this system must have a duplexed pump arrangement for 100% pumping redundancy and these pumps must be on emergency power. The size of the sump should be adequate to accommodate the estimated groundwater seepage. It is anticipated that the groundwater seepage can be controlled with typical, widely available, commercial/residential sump pumps.

If the proposed development is designed as a leak tight structure, then a private water drainage system will not be required. However, the structure must then be designed to resist hydrostatic pressure and uplift forces.

10 Groundwater Extraction and Discharge

Numerical analyses were conducted for both short term and long term dewatering scenarios. The modeling was conducted using computer software, which deploys the finite element modelling method. The Finite Element Model (FEM) for groundwater seepage indicates the short term (construction) and long term (permanent) dewatering requirements as provided below. The finite element model results are presented in Appendix E.

The groundwater seepage estimates, which have been provided, represent the steady state groundwater seepage. There will be an initial drawdown of the groundwater before a steady state condition is reached. The rate of the initial drawdown, and therefore discharge, is dependent on the dewatering contractor and how the groundwater is being dealt with at the site. An estimated initial volume of stored groundwater which will require removal before steady state is reached has been provided below.

Please note that the excavation will be exposed to the elements, and therefore storm water will have to be managed. The short-term control of groundwater should consider stormwater management from rainfall events. A dewatering system should be designed to consider the removal of rainfall from excavation. A design storm of 25 mm has been used in the quantity estimates.

As required by Ontario Regulation 63/16, a plan for discharge must consider the conveyance of storm water from a 100-year storm. The additional volume that will be generated in the occurrence of a 100-year storm event is approximately 602,000 L.

Stored Groundwater (pre-excavation/dewatering)							
Volume of	Volume of Excavation Below	Volume of Sto	red Groundwater	Volume of Avail	able Groundwater		
Excavation (m ³)	Water Table (m ³)	(m³)	(L)	(m³)	(L)		
72,960	42,880	12,000	12,000,000	9,700	9,700,000		

	Short Term (Construction) Groundwater Quantity – Safety Factor of 2 Used							
Scenario	Groundwat	er Seepage	Design Rai (25n		Total Daily Water Takings			
	L/day	L/min	L/day	L/min	L/day	L/min		
Caisson Wall Shoring	25,000	17.4	160,000	111.1	185,000	128.5		

	Long Term (Construction) Groundwater Quantity – Safety Factor of 2 Used							
Scenario	Groundwate	er Seepage		esign Rainfall 25mm)	Total Daily Water Takings			
	L/day	L/min	L/day	L/min	L/day	L/min		
Caisson Wall Shoring	90,000	62.5	9,000	6.3	99,000	68.8		
Caisson Wall Shoring with Waterproofed Foundation Walls	40,000	27.8	9,000	6.3	49,000	34.0		
Fully Waterproofed	0	0.0	0	0.0	0	0.0		

	Scenario				
Regulatory Requirements	Caisson Wall Shoring	Caisson Wall Shoring with Waterproofed Foundation Walls	Fully Waterproofed		
Environmental Activity and Sector Registry (EASR) Posting	Required	NA*	NA*		
Short Term Permit to Take Water (PTTW)	Not Required	NA*	NA*		
Long Term Permit to Take Water (PTTW)	Required	Not Required	Not Required		
Short Term Discharge Agreement City of Toronto	Required	NA*	NA*		

		Scenario	
Regulatory Requirements	Caisson Wall Shoring	Caisson Wall Shoring with Waterproofed Foundation Walls	Fully Waterproofed
Long Term Discharge Agreement City of Toronto	Required	Not Required	Not Required

*Not applicable. Regulatory requirement applies to short term conditions only, whereas proposed scenario applies to long term conditions.

Please note:

- The native soils must be dewatered a minimum of 1.2 m below the footing elevation prior to excavation to preserve the in-situ integrity of the native soils during construction dewatering activities. It is anticipated that the groundwater table will rise to the elevation of the subfloor drainage in the event of a drained structure or the waterproofing in the event of a leak tight structure.
- The proposed pump schedule for short term construction dewatering has not been completed. As such, the actual peak short term discharge rate is not available at the time of writing this report. The pump schedule must be specified by either the dewatering contractor retained or the mechanical consultant.
- The proposed pump schedule for long term permanent drainage has not been completed. As such the actual peak long term discharge rate is not available at the time writing of this report. The pump schedule must be specified by the mechanical consultant.
- A leak-tight structure (structure that has not included a private water drainage system) has been considered as part of the proposed development at this time.
- On-site containment (infiltration gallery/dry well etc.) has not been considered as part of the proposed development at this time. If this option is considered, additional work will have to be conducted (i.e. infiltration testing).

11 Evaluation of Impact

11.1 Zone of Influence (ZOI)

The Zone of Influence (ZOI) with respect to groundwater is calculated based on the estimated groundwater taking rate and the hydraulic conductivity of the unit which water will be taken at the Property.

The ZOI is calculated using the Sichardt equation below.

Equation: $R_0 = 3000 * dH * K^{0.5}$

Where:

dH is the dewatering thickness (m)

K is the hydraulic conductivity (m/s)

An impermeable shoring wall system will be employed at the site consisting of interlocking caisson walls on all sides of the excavation cut-off into sound bedrock. As such, a zone of influence with respect to groundwater will not be generated at the site as a result of short- and long-term dewatering.

11.2 Land Stability

The impacts to land stability of the proposed short-term and long-term dewatering at the site on adjacent structures are summarized as follows:

- The excavation will be supported by an impermeable, interlocking caisson wall system, fully socketed into the sound bedrock.
- A ZOI with respect to dewatering will not be generated at the site.
- As such, there will be no drawdown of the groundwater table outside of the footprint of the excavation.
- There will be no increase of effective stress within the native soils outside of the excavation footprint and therefore dewatering induced impacts such as settlement in the surrounding soils, is not anticipated.
- The calculated dewatering-induced settlements for different shoring scenarios are as follows:

Scenario	dH (m)	Increase of Effective Stress (kPa)	Maximum Additional Settlement (mm)
Caisson Wall Shoring	0	0	0
Caisson Wall Shoring and Waterproofed Walls	0	0	0
Fully Waterproofed	0	0	0

On this basis, the impact of the proposed dewatering on the existing adjacent structures is considered by Grounded to be negligible and therefore within acceptable limits.

11.3 City's Sewage Works

Negative impacts to City's sewage works may occur in terms of the quantity or quality of the groundwater discharged. This report provided the estimated quantity of the water discharge.

However, this report does not speak to the sewer capacities. The sewer capacity analysis is provided under a separate cover by the civil consultant.

The quality of the proposed groundwater discharge is provided in Section 7. As noted in that section, the groundwater sample **exceeded** the **Limits for Storm Sewer Discharge** and **met** the **Limits for Sanitary and Combined Sewer Discharge**.

As such additional treatment will be required before the water can be discharged to the Storm Sewer and additional treatment will not be required before the water can be discharged to the Sanitary and Combined Sewer, to avoid impacts to the City's sewage works caused by groundwater quality.

11.4 Natural Environment

There are no natural waterbodies within the ZOI that will be affected by the proposed construction dewatering or permanent drainage. Any groundwater which will be taken from the site will be discharged (if required) into the City's sewer systems and not into any natural water body. As such, there will be no impact to the natural environment caused by the water takings at the site.

11.5 Local Drinking Water Wells

The site is located within the municipal boundaries of the City of Toronto. The site and surrounding area are provided with municipal piped water and sewer supply. There is no use of the groundwater for water supply in this area of Toronto. As such, there will be no impact to drinking water wells.

11.6 Contamination Source

The site and immediately surrounding area currently consist mostly of residential and commercial areas. The historic land uses are anticipated to be a source of potential contamination and are expected to provide an Area of Potential Environmental Concern for the site. As such, the pumping of groundwater at the site is anticipated to facilitate the movement of potential contaminants onto the site. Evaluation of the environmental condition of the site will be completed by Grounded under a separate cover (File No: 21-199).

12 Proposed Mitigation Measures and Monitoring Plan

The extent of the negative impact identified in previous sections will be limited to the ZOI caused by the groundwater taking at the site.

As a result of dewatering and draining the soil, changes in groundwater level have the potential to cause settlement based on the change in the effective stresses within the ZOI.

If adjacent buildings or municipal infrastructure are within the ZOI and will undergo settlement that may be considered unacceptable as identified the Land Stability Section, consideration should be given to implement a monitoring and mitigation program during dewatering activities.

Both the temporary construction dewatering system and the permanent building drainage system must be properly installed and screened to ensure sediments and fines will not be removed, which is typically a primary cause of dewatering related settlement.

13 Limitations

Natural occurrences, the passage of time, local construction, and other human activity all have the potential to directly or indirectly alter the subsurface conditions at or near the project site. Contractual obligations related to groundwater or stormwater control must be considered with attention and care as they relate this potential site alteration.

The hydrogeological engineering advice provided in this report is based on the factual observations made from the site investigations as reported. It is intended for use by the owner and their retained design team. If there are changes to the features of the development or to the scope, the interpreted subsurface information, geotechnical engineering design parameters, advice, and discussion on construction considerations may not be relevant or complete for the project. Grounded should be retained to review the implications of such changes with respect to the contents of this report.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Grounded accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report, including consequential financial effects on transactions or property values, or requirements for follow-up actions and costs.

13.1 Report Use

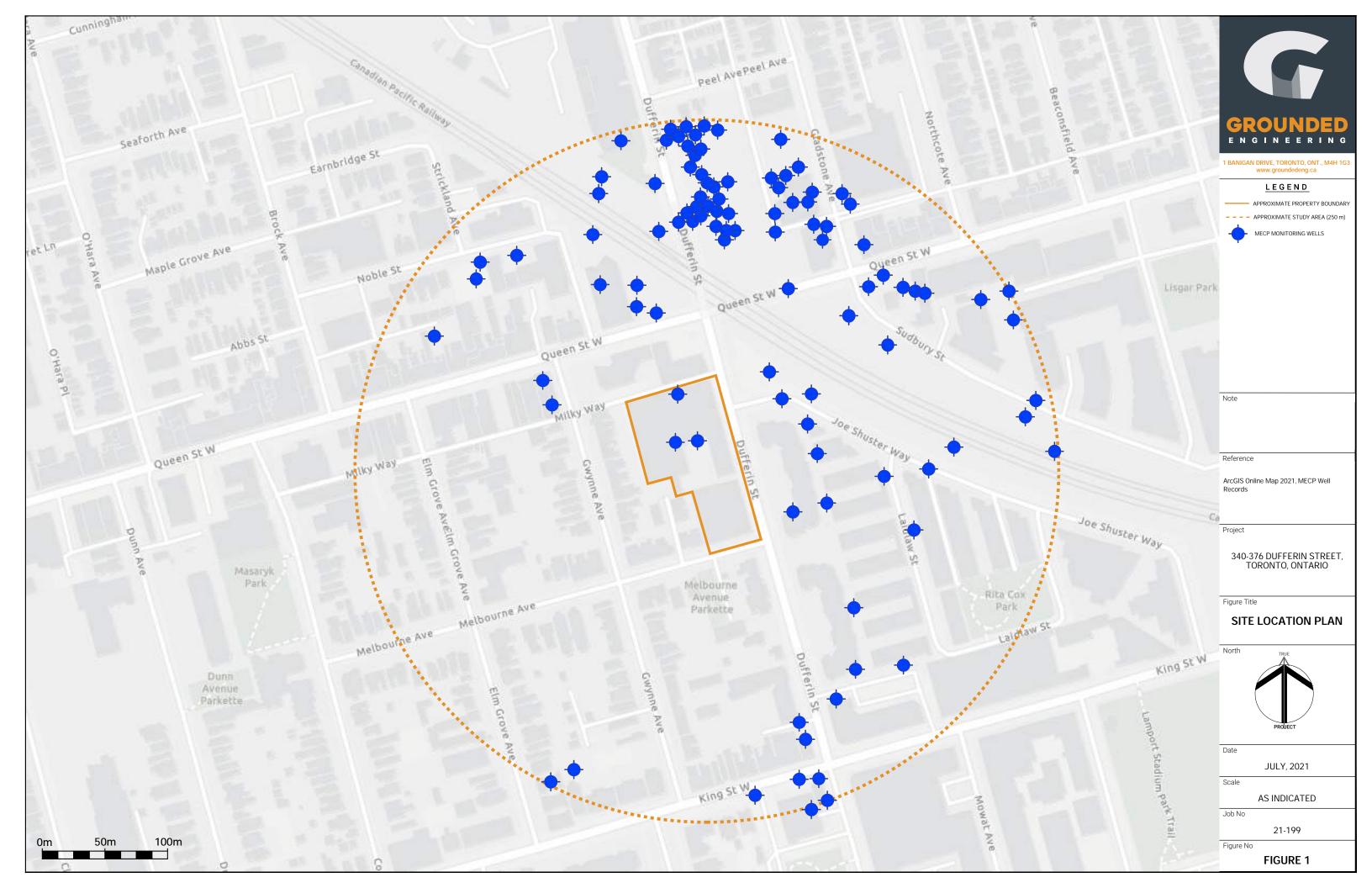
The authorized users of this report are Hullmark Sun Life (376 Dufferin) LP and their design team, for whom this report has been prepared. Grounded Engineering Inc. maintains the copyright and ownership of this document. Reproduction of this report in any format or medium requires explicit prior authorization from Grounded Engineering Inc. The City of Toronto may also make use of and rely upon this report, subject to the limitations as stated.

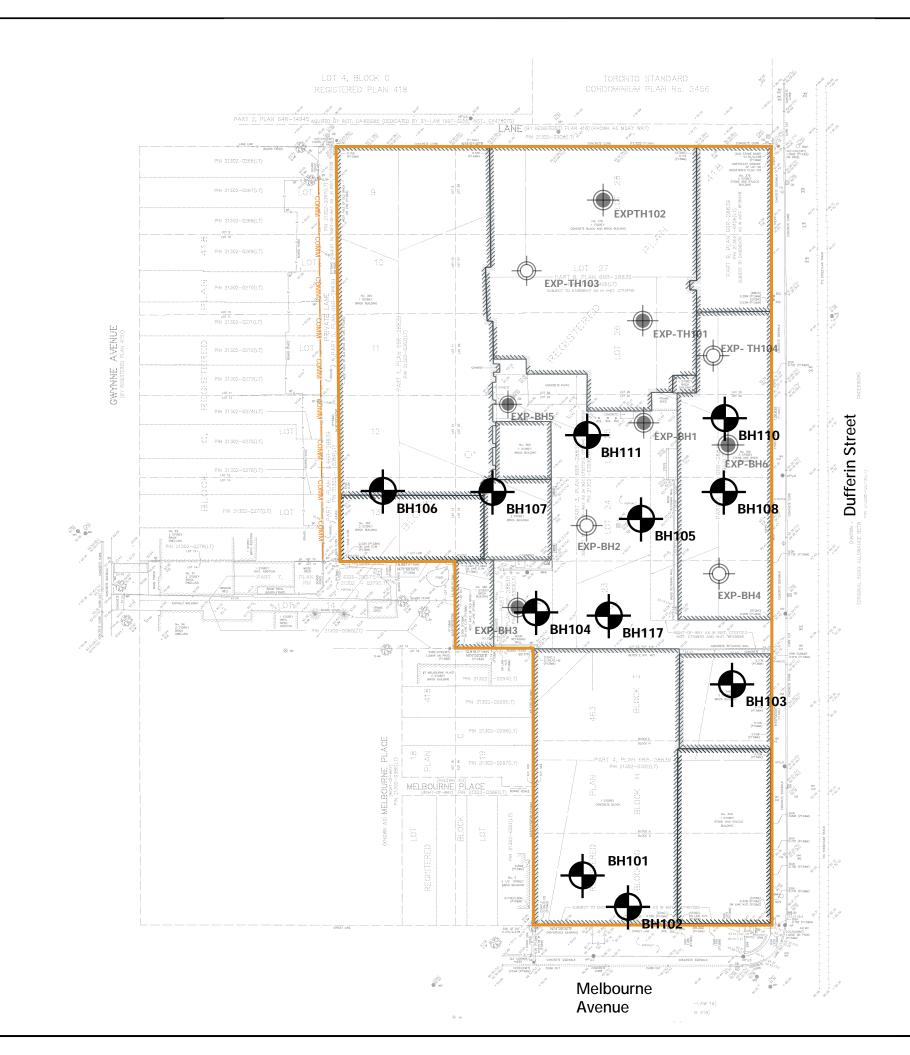
14 Closure

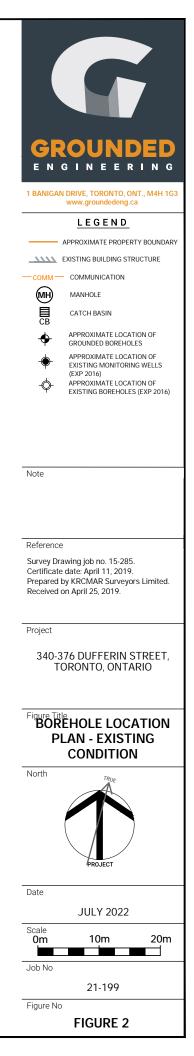
If there are any questions regarding the discussion and advice provided, please do not hesitate to contact our office. We trust that this report meets your requirements at present.

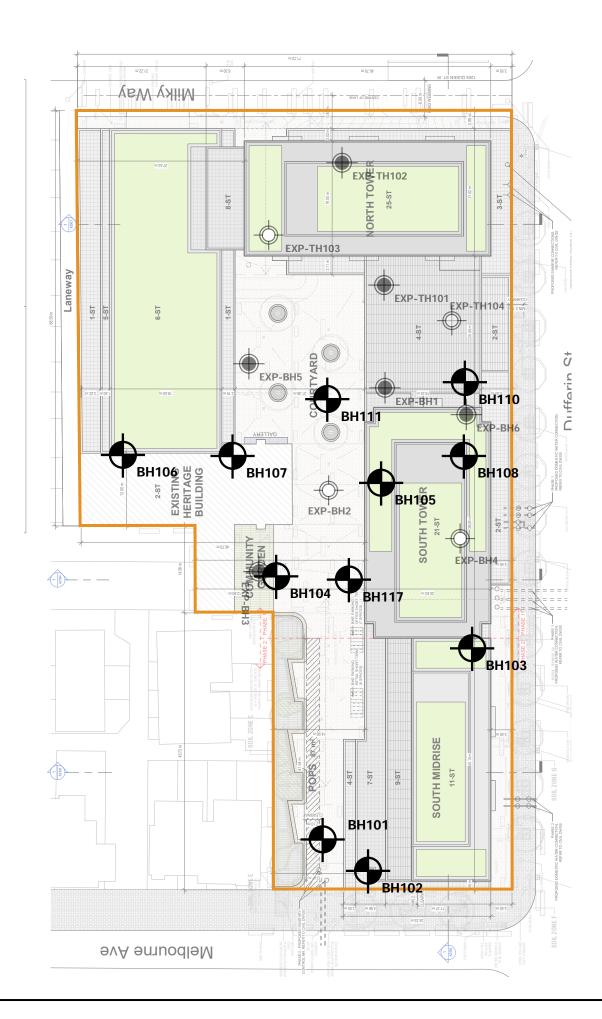
For and on behalf of our team,

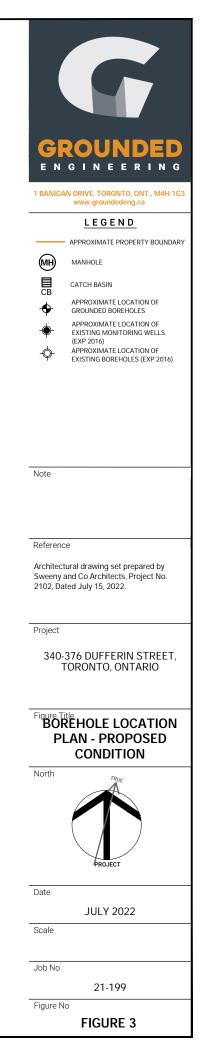
Arman Gelimforoush, MAS.c, EIT Project Manager Jason Crowder, Ph.D., P.Eng. Principal

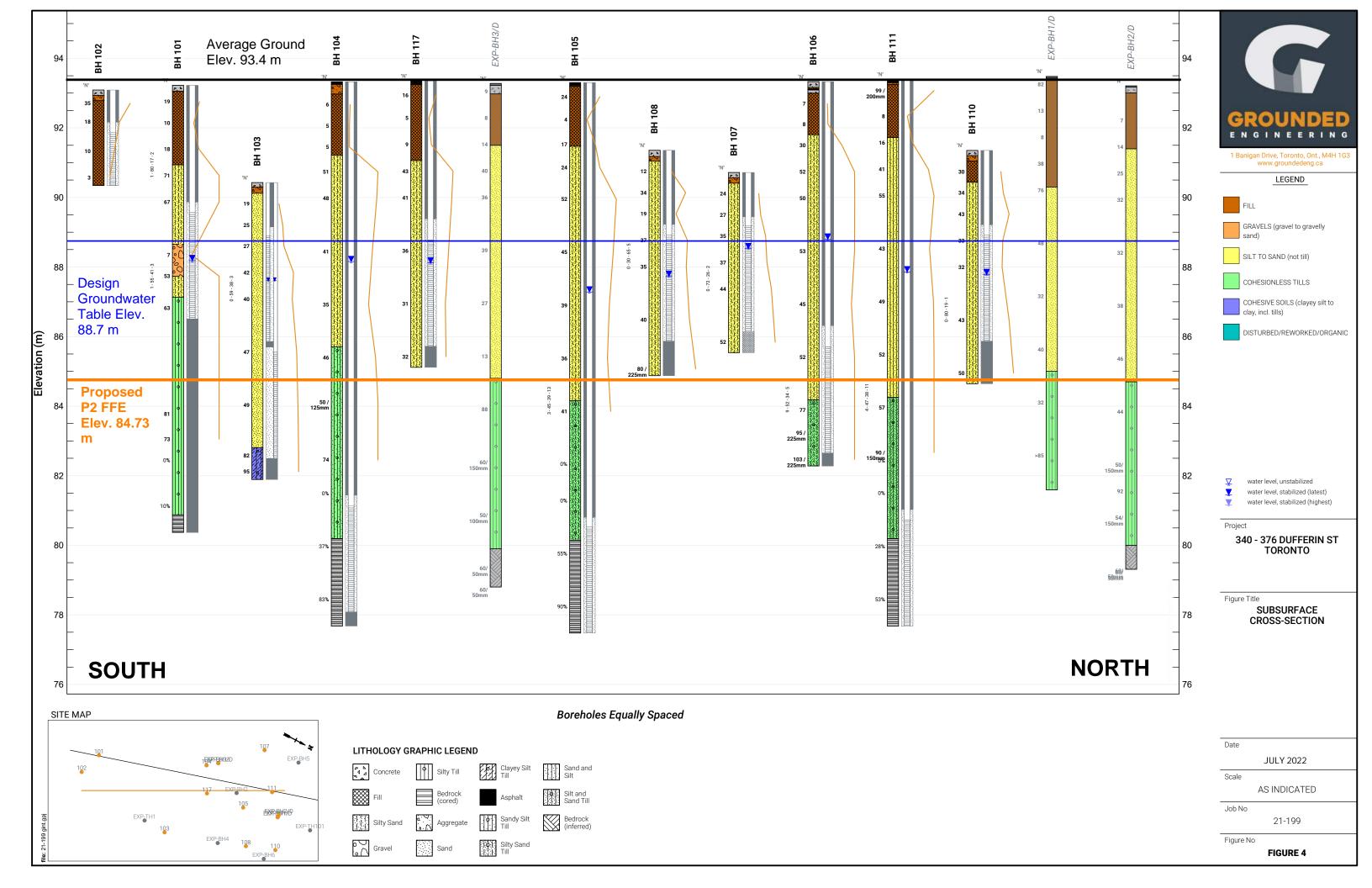

PROFESSION


J. J. CROWDER 100077148 18/7/2022


 $\hat{\mathbf{x}}$







APPENDIX A

SYMBOLS & ABBREVIATIONS **ENVIRONMENTAL SAMPLES** SAMPLING/TESTING METHODS MC: moisture content M&I: metals and inorganic parameters SS: split spoon sample LL: liquid limit PAH: polycyclic aromatic hydrocarbon AS: auger sample PL: plastic limit PCB: polychlorinated biphenyl GS: grab sample PI: plasticity index VOC: volatile organic compound y: soil unit weight (bulk) PHC: petroleum hydrocarbon FV: shear vane Gs: specific gravity BTEX: benzene, toluene, ethylbenzene and xylene DP: direct push PPM: parts per million Su: undrained shear strength PMT: pressuremeter test ST: shelby tube 1st water level measurement 2nd water level measurement most recent V CORE: soil corina

RUN: rock coring

water level measurement

FIELD MOISTURE (based on tactile inspection)

DRY: no observable pore water

MOIST: inferred pore water, not observable (i.e. grey, cool, etc.) WET: visible pore water

COMPOSITION

Term	% by weight
<i>trace</i> silt	<10
<i>some</i> silt	10 - 20
silt y	20 - 35
sand and silt	>35

ASTM STANDARDS

ASTM D1586 Standard Penetration Test (SPT)

Driving a 51 mm O.D. split-barrel sampler ("split spoon") into soil with a 63.5 kg weight free falling 760 mm. The blows required to drive the split spoon 300 mm ("bpf") after an initial penetration of 150 mm is referred to as the N-Value.

ASTM D3441 Cone Penetration Test (CPT)

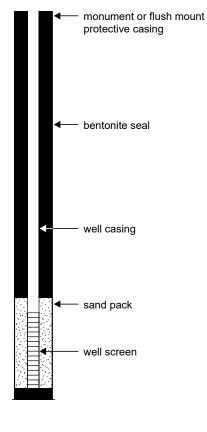
Pushing an internal still rod with a outer hollow rod ("sleeve") tipped with a cone with an apex angle of 60° and a cross-sectional area of 1000 mm² into soil. The resistance is measured in the sleeve and at the tip to determine the skin friction and the tip resistance.

ASTM D2573 Field Vane Test (FVT)

Pushing a four blade vane into soil and rotating it from the surface to determine the torque required to shear a cylindrical surface with the vane. The torque is converted to the shear strength of the soil using a limit equilibrium analysis.

ASTM D1587 Shelby Tubes (ST)

Pushing a thin-walled metal tube into the in-situ soil at the bottom of a borehole, removing the tube and sealing the ends to prevent soil movement or changes in moisture content for the purposes of extracting a relatively undisturbed sample.


ASTM D4719 Pressuremeter Test (PMT)

Place an inflatable cylindrical probe into a pre-drilled hole and expanding it while measuring the change in volume and pressure in the probe. It is inflated under either equal pressure increments or equal volume increments. This provides the stress-strain response of the soil.

COHESIONLESS **Relative Density N-Value** <4 Very Loose 4 - 10 Loose Compact 10 - 30 30 - 50 Dense >50 Very Dense

<u>COHESIVE</u>		
Consistency	N-Value	Su (kPa)
Very Soft	<2	<12
Soft	2 - 4	12 - 25
Firm	4 - 8	25 - 50
Stiff	8 - 15	50 - 100
Very Stiff	15 - 30	100 - 200
Hard	>30	>200

WELL LEGEND

ROCK CORE TERMINOLOGY (MTO SHALE)

TCR Total Core Recovery the total length of recovery (soil or rock) per run, as a percentage of the drilled length

- SCR Solid Core Recovery the total length of sound full-diameter rock core pieces per run, as a percentage of the drilled length
- RQD Rock Quality Designation the sum of all pieces of sound rock core in a run which are 10 cm or greater in length, as a percentage of the drilled length

Natural Fracture Frequency (typically per 0.3 m) The number of natural discontinuities (joints, faults, etc.) which are present per 0.3m. Ignores mechanical or drill-induced breaks, and closed discontinuities (e.g. bedding planes).

LOGGING DISCONTINUITIES

Spacing in Discontinuity Sets Discontinuity Type Roughness (Barton et al.) (ISRM 1981) **BP** bedding parting vc very close < 60 mm CL cleavage 5 cm 60 - 200 mm С close CS crushed seam М mod. close 0.2 to 0.6 m VR Very rough F7 fracture zone 0.6 to 2 m JRC = 16 - 18 W wide MB mechanical break very wide VW > 2 m IS infilled seam JRC = 18 - 20 JT Joint R Rough SS shear surface JRC = 12 - 14 **Aperture Size** SZ shear zone JRC = 14 - 16 VN vein т closed / tight < 0.5 mm vo void s Smooth **GA** gapped 0.5 to 10 mm OP open JRC = 4 - 8 > 10 mm Coating CN Clean JRC = 6 - 8 Planarity SN Stained SL Slickensided Oxidized PR Planar ОХ (visually assessed) UN Undulating VN Veneer POL Polished ST Stepped СТ Coating (>1 mm) JRC = 0 - 2 IR Irregular DIS Discontinuous **Dip Inclination** JRC = 2 - 4 CU Curved horizontal/flat 0-20° н 20 - 50° D dippina

GENERAL

sub-vertical

vertical

SV

ν

Degree of Weathering (after MTO, RR229 Evaluation of Shales for Construction Projects)

Zone	Degree	Description
Z1	unweathered	shale, regular jointing
Z2		angular blocks of unweathered shale, no matrix, with chemically weathered but intact shale
Z3	partially weathered	soil-like matrix with frequent angular shale fragments < 25mm diameter
Z4a		soil-like matrix with occasional shale fragments < 3mm diameter
Z4b	fully weathered	soil-like matrix only

Strength classification (after Marinos and Hoek, 2001; ISRM 1981b)

50 - 90°

90±°

Grade		UCS (MPa)	Field Estimate (Description)	VOI 3
R6	extremely strong	> 250	can only be chipped by geological hammer	Very
R5	very strong	100 - 250	requires many blows from geological hammer	Thick
R4	strong	50 - 100	requires more than one blow from geological hammer	Medi
R3	medium strong	25 - 50	can't be scraped, breaks under one blow from geological hammer	Thinl Very
R2	weak	5 - 25	can be peeled / scraped with knife with difficulty	Lami
R1	very weak	1 - 5	easily scraped / peeled, crumbles under firm blow of geo. hammer	Thinl
R0	extremely weak	< 1	indented by thumbnail	

Bedding Thickness (Q. J. Eng. Geology, Vol 3, 1970)

Very thickly bedded	> 2 m
Thickly bedded	0.6 – 2m
Medium bedded	200 - 600mm
Thinly bedded	60 – 200mm
Very thinly bedded	20 – 60mm
Laminated	6 – 20mm
Thinly Laminated	< 6mm

ROUNDED NGINEERING

Date Started : Oct 16, 2021 Position : E: 626748, N: 4833162 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 101

_		: 21-199				Project		ufferin St, Toronto Client : Hullmark Developments Li	
ū		stratigraphy			samp	es ,		undrained shear strength (kPa) headspace vapour (ppm) O unconfined + field vane ∖ kexane □ isobutylene lab da	ata
	elev depth	description	log			T N-value	well details		ents
LA IIG W/	(m) 93.2	TOP OF SLAB	graphic log	number	type	SPT N-value			ain size oution MIT) SA S
,	-	165mm CONCRETE	E	1A			0		
0D=215 mm LA rig W/ ruii nammer	-	FILL, silty sand, trace gravel, trace brick fragments, trace rock fragments, trace cinders, compact, black, moist		1B	SS	19	-	□ × O 1 <u>B:</u> H-Ms, Metals, O 0.5m: auger grindin)RPs
0	_			2	SS	10	- 92	<u>Ф</u> Ф <u>SS2:</u> РАНs	
		at 1.5 m, trace rootlets, brown		ω	SS	18	2 –		
ŀ	90.9 2.3	SAND, some silt, trace gravel, trace clay, very dense, brown, moist		4	SS	71	- 91	1 SI X O VOCs	80 PHCs,
	-			5	SS	67	3 90		
	_						4		
	8 <u>8.6</u> 4.6	GRAVEL, some sand, trace silt, trace rock							
٤	-	fragments (inferred cobbles), loose, grey, wet	Po	6 7A	SS	7	5	□ × ○ <u>SS6:</u> PHCs □ × ○ 5.2m : auger grindin	ng
2	87.7 5.5 87. 1	SILTY SAND, trace gravel, trace clay, very dense, grey, moist to wet		7B	SS	53		1 1 7 <u>B:</u> VOCs	55
0	6.1	SILT, some sand, some gravel, trace to some clay, trace shale fragments, very dense, grey, wet	0	8	SS	63		O SS8: BTEX, PHCs	
	-	(GLACIĂL TILL)	•				7		
	_		0						
	_		0				- 85		
							9 — — 84		
	-			9	SS	81	-	O	
-	_	at 10.1 m, trace gravel, some sand/sand lenses, grey, moist		10/	<u>ss</u>		0	10.2m: rock coring split spoon extender	
_	_			1	RUN		- 1 - 82	m and over cored	
0D=96 mm	-		•				-		
-	 80.9 12.3	GEORGIAN BAY FORMATION	•	2	RUN		2		
	80.3 12.9	(See rock core log for details)					-		
	12.9	END OF BOREHOLE						GROUNDWATER LEVELS date depth (m) elevation (m)	
		Contained drill water upon completion of drilling. Unstabilized water level not measured. Borehole was open.					Nov Nov Dec	26, 2021 5.1 88.1 12, 2021 5.1 88.1 26, 2021 5.1 88.1 10, 2021 5.1 88.1	
		38 mm dia. monitoring well installed. No. 10 screen					Dec	23, 2021 5.1 88.1 7, 2022 5.1 88.1	

Date Started : Oct 16, 2021 Position : E: 626748, N: 4833162 (UTM 17T) Elev. Datum : Geodetic

ROCK CORE LOG 101

Fi	e No.	: 21-199		Proj	: 340 - 376	Dufferin St,	, Toron	to Client ∶⊦	Client : Hullmark Developments Limite		
depth (m)	graphic log	stratigraphy Rock coring started at 10.2m below grade	elev depth (m) 83.0	recovery	elevation (m)	shale weathering zones	UCS (MPa) 5 25 50 100 250 estimated strength ₩ ₩ ₩ ₩ ₩ ₩ ₩	natural fracture frequency	laboratory testing	notes and comments	elevation (m)
- - - 11	0 0 0 0 0	SILT, some sand, some gravel, trace to some clay, trace shale fragments, very dense, grey, wet (GLACIAL TILL)	10.2 R1 <u>81.9</u> 11.3	TCR = 73 % SCR = 0 % RQD = 0 %	83 - - - - 82 -			N/A		10.2 / 83.0 - 10.6 / 82.7m: lost core	- - - 82 -
- - 12 -	0 0 0	GEORGIAN BAY FORMATION	R2	TCR = 100% SCR = 38% RQD = 10%							- - 81 –
-		Shale, grey, thinly bedded, weak; joints are horizontal, gapped, planar;	80.3		-			3		12.4 / 80.8m: JT SV 12.7 / 80.5m: JT SV	-
		limestone, light grey, very thinly bedded to thinly bedded, medium strong Overall shale: 84%, limestone: 16%	12.9m	1	1 -				1		

END OF COREHOLE

Date Started : Oct 16, 2021 Position : E: 626757, N: 4833159 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 102

File	No.	: 21-199				Proje	ect : 3	340 - 3	76 Duf	ferin St, Toronto	Client : Hullmark Dev	elopments Limited
		stratigraphy		samp	es	Ê			undrained shear strength (kPa) O unconfined + field vane	headspace vapour (ppm) X hexane isobutylene	lab data	
drill method : Mini Mole	elev depth (m) 93.1		graphic log	number	type	SPT N-value	depth scale (m)	well details	elevation (m)		I methane 100 200 300 moisture / plasticity PL MC LL I 0 20 30	and comments rest grain size distribution (%) (MIT) GR SA SI CL
	92.9	150mm CONCRETE					0-		-93			-
	0.2 92.8	150mm AGGREGATE					-		-			-
	0.3	FILL, sand, some silt, trace gravel, trace construction debris, trace cinders, trace rock		1	SS	35	-		-			SS1: BTEX, PAHs, PHCs, VOCs
		fragments (inferred cobbles), trace brick fragments, compact to dense, brown, moist at 0.8 m, silt and clay packets		2	SS	18	- 1-		- - - 92		DX	<u>SS2;</u> EC/SAR, H-Ms, Metals, ORPs, PAHs, pH
	-	at 1.5 m, trace rootlets		3	SS	10	-				na da	-
	1						2-		- 91			SS3: BTEX, PHCs, VOCs
	90.4	at 2.3 m, very loose		4	SS	3	-		. - -	/	23	2.7m: spoon bouncing, hit - refusal -
	2.7						-					SS4: BTEX, PHCs, VOCs

END OF BOREHOLE

Dry and open upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GRO	GROUNDWATER LEVELS											
date	<u>depth (m)</u>	elevation (m)										
Oct 26, 2021	dry	n/a										
Nov 12, 2021	dry	n/a										
Nov 26, 2021	dry	n/a										
Dec 10, 2021	dry	n/a										
Dec 23, 2021	dry	n/a										
Jan 7, 2022	dry	n/a										

Date Started : Oct 12, 2021 Position : E: 626763, N: 4833199 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 103

_						- ,			ferin St, Toronto				elopments Lim
		stratigraphy			samp	es	Ê		undrained shear strength (kPa) O unconfined + field vane	,	headspace vapour (ppm) × hexane	obutylene	lab data
							depth scale (m) well details	Ê	pocket penetrometer Lab Vane		methane		and ≝≣ commen
e	elev epth		<u>B</u>			SPT N-value	depth scale (well details	ion	40 80 120 160 SPT N-values (bpf)		100 200 moisture / plasticity	300	in commen
de (epth m)	description	graphic log	number		²-	ell o	levation	X dynamic cone		PL MC	LL	ratar atar grain s distributio
	90.4	TOP OF SLAB	grap	nu	type	SPT	e n	ē	10 20 30 40		10 20	30	5 > distributio (MIT GR SA
		125mm CONCRETE	P				0-3		10 20 30 40		· ·		
	90.1 0.3	175mm AGGREGATE	a										
	0.3	SAND, some silt, compact, brown, moist					_	- 90					-
				1	SS	19				ľ	30		
								_					
	_						1-						
				2	SS	25				₿ I	3		SS2: H-Ms, Metals, OR PAHs
	-							89					
l						07				ļ			
				3	SS	27	2	÷		×			SS3: BTEX, PAHs, PHC VOCs
				\vdash				÷					
		at 2.3 m, silty sand, dense, grey						88					
	-			4	SS	42					□ ×0		SS4: BTEX, EC/SAR, H-
								:]					Metals, ORPs, pH, PHC VOCs
	_						3-1 -	.†					
		at 3.0 m, sand and silt, trace clay, wet]					0 59
				5	SS	40		87) OX		SS5: BTEX, PHCs, VOC
	1]:呂:	·					
								.L					
	-						4	:F					
]					
								86				_	-
l								1					
				6	SS	47		1		\ ¢	о х с		
Í	-						5-	.]					SS6: BTEX, PHCs, VOC
								·					
	-							85					
							6	-					
l		at 6.1 m, moist					6 -	:]					
				7	SS	49		. 84		-	xo		
	-												
								·					
	_						7-	۲.					7.0m: auger grinding to
							I I' · ` · 🗀	·					7.6m
Ι.								-83		_			1
8	32.8 7.6	CLAVEY SILT some cond trace group	181				: 目	1					
l	Ĩ	CLAYEY SILT , some sand, trace gravel, trace shale fragments, trace rock fragments		8	SS	82		:		4	o x c		
	-	(cobbles inferred), hard, grey, moist (GLACIAL TILL)					8 —						
ĺ		(OLAVIAL IILL)	[P]	9	SS	95				d	o xi		
8	31.9							-82					
	8.5	END OF BOREHOLE											
			1	03-9	S GRO	JNDW	ATER LEVELS			OUN	DWATER LEVELS		
		Contained drill water upon completion of		d	ate		<u>depth (m)</u>		ion (m) date		<u>depth (m)</u>		<u>tion (m)</u>
		drilling. Unstabilized water level not			6, 202 ⁻ I, 2021		2.9 2.8		7.5 Oct 26, 20 7.6 Nov 4, 202		2.8 2.8	8	37.6 37.6
		measured. Borehole was open.	N	lov 1	2,202	1	2.8	87	7.6 Nov 12, 20)21	2.5	8	37.9
		38 mm dia. monitoring well installed.			6, 202 26, 202		2.8 2.8		7.6 Nov 16, 20 7.6 Nov 26, 20)21)21	2.8 2.8		37.6 37.6
		No. 10 screen	D	ec 1	0,202	1	2.9	87	7.5 Dec 10, 20)21	2.9	8	37.5
			- 0	ec 2	3, 202	1	2.8	8/	7.6 Dec 23, 20	121	2.8	۶	37.6

Tech: DI ~|~ PM: AG/SP ~|~ Rev: NN

Date Started : Oct 22, 2021 Position : E: 626732, N: 4833201 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 104

File	No.	: 21-199				Proj	ect :	340 -	376 Duf	ferin St, Toronto Client : Hullmark Developments Limite
		stratigraphy	1		samp	les	Ê			undrained shear strength (kPa) O unconfined + field vane kexane □ isobutylene lab data
 D	elev		b B			lue	depth scale (m)	vell details	elevation (m)	
drill method : CME 55	elev depth (m)	description	graphic log	number		SPT N-value	epth :	ell d	evati	SPT N-values (bpf) moisture / plasticity The second secon
	93.3	GROUND SURFACE	grap	nun	type	SPT	ĕ 0		e	10 20 30 40 10 20 30 GR SA SI
•	92.9	75mm ASPHALT	o O						- 93	First 14 inches were cored before drilling started. The
- (Kur	0.4	275mm AGGREGATE		1	SS	6				core contained asphalt, aggreagte, and some fill
jers (skir mm	-	FILL, clayey silt, some sand, trace gravel, trace cinders, trace asphalt, trace concrete, firm, brown and black, moist		2	SS	5	- 1	-	- - 92	ss1: Dioxins
stem aug 0D=110	- 91. 2	at 1.0 m, grey at 1.6 m, black and grey		3A	SS	5		-	_	B O SS2: H-Ms, Metals, ORPs, PAHs
-hollow stem augers (skinny) 0D=110 mm	2.1	SILTY SAND, dense to very dense, brown, moist		<u>3B</u>	SS	51		-	-91	B O 3A: BTEX, PHCs, VOCs
X	_			-			3	-	-	SS4; H-Ms, Metals, ORPs, PAHs
	-			5	SS	48		-	— 90 _	
	_						4	_	- 89	
	-	at 4.6 m, wet		6	SS	41	5	;	_	TX O SS6: BTEX, PHCs, VOCs
	-							-	- 88	
e	-			7	SS	35	6	-	- 87	
mud rotary small OD=100 mm	_			-	33	33		-	-	
- mud r	00.7							-	- 86	
	7.6	SANDY SILT, trace gravel, trace clay, trace rock fragments (cobbles inferred), dense to very dense, grey, wet	0	8	SS	46	8	-	-	B O SS8; PHCs
	-	(GLACIAL TILL)	.0						- 85 -	
	_		0	9	ss	50 / 125mn			- 84	
	_						10		-	
¥	-							-	- 83	
Î	-	at 10.7 m, clayey silt, some sand, trace gravel, trace shale fragments		10	SS	74	11	-	- 82	Split spoon extended to 11 m and was overcored.
	_		 0	1	RUN		12	- 		
() ()	_								-81	
ng (H	80. 2		. 0 ; .				13	L E		
Rock coring (HQ) OD=96 mm	13.1	GEORGIAN BAY FORMATION (See rock core log for details)		2	RUN				··· - 80	at 13.6 m, top of sour
	-	at 13.6 m, transition to sound bedrock		-		-	14		. – 	bedrock
	-			3	RUN					
	77.7						15	'∃∷≣ -	- 78	
_	15.6	END OF BOREHOLE					-			
									da	GROUNDWATER LEVELS ate <u>depth (m)</u> <u>elevation (m)</u>
		Borehole was filled with drill water upon							0ct 29 Nov 4,	9, 2021 5.5 87.8

 date
 depth (m)
 elevation (m)

 Oct 29, 2021
 5.5
 87.8

 completion of drilling.
 Nov 4, 2021
 5.3
 88.0

 50 mm dia. monitoring well installed.
 Nov 16, 2021
 5.2
 88.1

 No. 10 screen
 Dec 10, 2021
 5.2
 88.1

 Dec 23, 2021
 5.2
 88.1

 Jan 7, 2022
 5.2
 88.1

Date Started : Oct 22, 2021 Position : E: 626732, N: 4833201 (UTM 17T) Elev. Datum : Geodetic

ROCK CORE LOG 104

Fil	e No.	: 21-199		Proj	ject :	340 - 376	Dufferin St	, Toront	o Client : I	Hullmark Developments Limited
depth (m)	graphic log	stratigraphy Rock coring started at 11.1m below grade	elev depth (m)	recovery	elevation (m)	shale weathering zones	UCS (MPa) 5 25 50 100 250 estimated strength E & & & & & & & & & & & & & & & & & & &	natural fracture frequency	laboratory testing	notes and comments
- - - - 12 -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SANDY SILT, trace gravel, trace clay, trace rock fragments (cobbles inferred), dense to very dense, grey, wet (GLACIAL TILL)	80.7 12.6	TCR = 97% SCR = 0% RQD = 0%	82 — - - 81 — -			NA		82
- - 13 - - - - 14		GEORGIAN BAY FORMATION Shale, grey, thinly bedded, weak; joints are horizontal, gapped, planar; limestone, light grey, very thinly bedded to thinly bedded, medium strong Overall shale: 60%, limestone: 40% at 13.6 m (Elev. 79.8 m), transition to sound	R2	TCR = 100% SCR = 63% RQD = 37%	- - 80 - - -			7 3+Rz 3		13.1 / 80.3 - 13.1 / 80.2m: SM clay 80 13.5 / 79.8 - 13.6 / 79.8m: rubbalized zone (5 mm) 13.8 / 79.5 - 13.9 / 79.5m: SM clay 14.0 / 79.3 - 14.0 / 79.3m: SM clay
- - - - 15 -		Run 2 : 30% limestone 70% shale	19.2 14.1 R3	TCR = 100% SCR = 98% RQD = 83%				4 3 2 4		14.2 / 79.1 - 14.3 / 79.1m: SM clay 79
		Run 3 : 35% limestone 65% shale	77.7 15.6m		/8-			5		

END OF COREHOLE

Date Started : Oct 18, 2021 Position : E: 626740, N: 4833222 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 105

File No). :	: 21-199				Proj	ect :	340	- 376	5 Duff	ferin St, Toronto Client : Hullmark Developments Limite
		stratigraphy	1		samp	les	(E				undrained shear strength (kPa) O unconfined + field vane kexane □ isobutylene lab data
drill method : CME 55 (w) SE (m) (w)	h	description GROUND SURFACE	graphic log	number	type	SPT N-value	depth scale (m)			elevation (m)	
A		75mm ASPHALT					0.			- 93	0.2m: SS1 was collected directly beside BH location
	-	25mm AGGREGATE		1	SS	24				00	due to suspected slab to 0.8m
	_	FILL, silty sand, trace gravel, trace cinders, trace brick fragments, trace rootlets,, loose to compact, black, moist		2	SS	4	1.			- 92	SS1: EC/SAR, H-Ms, Metals ORPs, PAHs, pH
91.5	<u> </u>	at 1.5 m, orangey brown, compact \at 1.8 m, light brown /	/	3A 3B	SS	17					BU O SS2: EC/SAR, H-Ms, ORPs,
		SILTY SAND, with clayey sily packets,					2.			-91	
	-	compact to dense, brown, moist	搦	4	SS	24	-				B O 3A: BTEX, PHCs, VOCs
-	_	at 3.0 m, very dense		5	SS	52	3.			-90	SS4: EC/SAR, H-Ms, Metals ORPs, PAHs, pH
hollow stem augers OD=215 mm	-	at 4.6 m, brown to grey (transitioning)			SS	45	- 4 - 5 -			- 89 - - 88	
hollow	-	at 6.1 m, wet		7	SS	39	6· 7·		Z	- 87	DX O SST: BTEX, PHCs
-	-	at 7.6 m, grey		8	SS	36	8-	-		- 86 - 85	
84.2		SAND AND SILT, some clay, trace gravel,		-			9.			- 84	
-	-	very dense, grey, moist to wet (GLACIAL TILL)	0 	9	SS	41	10 ·			-83	3 45 39
X I	-				RUN						10.7m: SS10, N=80/100mr clayey silt, trace gravel, trac sand, trace shale fragment
				-		-	11 -			-82	grey, hard, moist to 10.8m 10.7m: spoon bouncing, ro coring started
-	-		- 0	2	RUN		12 -			-81	
(HQ)	-			_							
Rock coring (HQ) 00=96 mm 00=96 mm	2	GEORGIAN BAY FORMATION (See rock core log for details) at 13.6 m, transition to sound bedrock		3	RUN	-	13 · 14 ·			- 80 - - 79	at 13.6 m, top of soun bedrock
77.5	-			4	RUN		15 -			- 78	
15.8				-	•		-		J	•	

END OF BOREHOLE

Unstabilized water level measured at 4.6 m below ground surface upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

JNDWATER LE	/ELS
<u>depth (m)</u>	<u>elevation (m)</u>
6.3	87.0
6.3	87.0
7.2	86.1
6.8	86.5
6.5	86.8
6.3	87.0
6.0	87.3
6.0	87.3
6.1	87.2
	depth (m) 6.3 6.3 7.2 6.8 6.5 6.3 6.0 6.0 6.0

Date Started : Oct 18, 2021 Position : E: 626740, N: 4833222 (UTM 17T) Elev. Datum : Geodetic

ROCK CORE LOG 105

Fil	e No.	: 21-199	Project : 340 - 376 Dufferin St, Toronto Client : Hullmark Developments Lim											
depth (m)	graphic log	stratigraphy Rock coring started at 10.7m below grade	ш <u>elev</u> depth (m) 82.6	recovery	elevation (m)	shale weathering zones	UCS (MPa) 5 25 50 100 250 estimated strength ₩ ₩ ₩ ₩ ₩ ₩ ₩	natural fracture frequency	laboratory testing	notes and comments	()il-			
- 11 -	0 	SAND AND SILT, some clay, trace gravel, very dense, grey, moist to wet (GLACIAL TILL)	82.6 10.7 R1	TCR = 69 % SCR = 0 % RQD = 0 %	- 82 -						82			
- - - 12 -	9 9 9 9 9 9		R2 80.5	TCR = 62% SCR = 0% RQD = 0 %	82 - - - 81 - -			N/A		12.2 / 81.1 - 12.5 / 80.8m: lost core	82			
- 13 		GEORGIAN BAY FORMATION Shale, grey, thinly bedded, weak; joints are horizontal, gapped, planar; limestone, light grey, very thinly bedded to thinly bedded, medium strong	12.8 R3	TCR = 100 % SCR = 72 % RQD = 55 %	- - 80 - -			4+Rz 4 0		12.8 / 80.5 - 12.9 / 80.4m: SM clay	80			
14 		Overall shale: 75%, limestone: 25% at 13.6 m (Elev. 79.7 m), transition to sound rock	<u>79.0</u> 14.3		- 79 - -			1			79			
- - 15 -		Run 3 : 32% limestone 68% shale	R4	TCR = 100% SCR = 100% RQD = 90%	- - 78 -			2 1 0			78			
-		Run 4 : 18% limestone 82% shale	77.5		-			1						

END OF COREHOLE

Date Started : Oct 14, 2021 Position : E: 626699, N: 4833213 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 106

-		· · ·						1			- h			h. 1			<u> </u>	nents Limi
	-+	stratigraphy			samp	les	Ê.			o unconfined		+ field va	ane		ace vapou hexane	isobutylen		lab data
						e	depth scale (m)	well details	elevation (m)	 pocket pen 40 		■ Lab Va 120 16		1		ethane 00 300	ilized level	and comments
	elev lepth	description	<u>bo</u>			SPT N-value	l sci	det	tion	SPT N-valu		120 10	ľ ⁰		re / plastic		unstabil water le	
Ì	(m)	description	hic	Iber	~	ź	epth	e	eva	Xdynamic		~			PL N	AC LL	sun	grain siz distribution (MIT)
Ĩ	93.3	TOP OF SLAB	graphic log	number	type	SPT	-	>	e	10		30 4	0		10 2	20 30		(MIT) GR SA
	93.1	165mm CONCRETE	P b				0 -			10	20	30 4	0					
۶Ē	0.2 93.1	40mm AGGREGATE	/ how	×					- 93									
2	0.2	40mm ASPHALT	18	× 1	SS	7							D	2	0			
U=0	93.1 0.2	90mm CONCRETE	1 🗱	ž					-						–		<u>SS1:</u> F	PAHs
	93.0		」	X			1-											
	0.3	FILL, silty sand, trace gravel, trace cinders, trace brick fragments, trace plastic		2	SS	8			- 92				0	K (2		<u>SS2:</u> E	C/SAR, H-Ms, Me pH
┢	91.8 1.5	ragments, loose, dark brown, moist ا	/	×														pH auger grinding
		at 0.9 m, trace concrete fragments	/ []	3	SS	30			_				C	з×		0	1.0111	auger grinning
	-	SILTY SAND, dense to very dense, brown, wet	- 14				2 -										<u>SS3:</u> E	BTEX, PHCs, VOCs
		wet	- 66	-					- 91									
	-		-12	4	SS	52								з×		0		
			- 66						_							Ĭ	ORPs,	C/SAR, H-Ms, Me PAHs, pH
	-		- 11				3-											
			- 13	5	SS	50			- 90				6	x				
	-			1			·						4	,		Ť		
				:														
	_		一段			1	4 -											
			间指	:					- 89									
	-							- 👤	09									
															-			
	_		립	6	SS	53	5 -							א נ	C			
			間語	:		+			- 88									
	-		一腔						00									
_			間的															
u u	_		一間				6 -											
=125 n		at 6.1 m, sandy silt, grey, wet				1			07									
Ö	_		間	7	SS	45	.		- 87					כ		X	SS7·F	TEX, PHCs, VOCs
			一般	<u>-</u>		+											<u></u>	,
			- 66	:		1	7-											
	_		- [14]						86									
			一時	:					÷									
	_			8	SS	52	8 -	日日	. F				L L) X		0		
							Ū	日日										
	_			:					85									
			間					日									8.5m:	auger grinding
							9-	Į Ė	· †									
┢	84. <u>7</u> 9.1	SILTY SAND, trace gravel, trace clay, very		:		+	3											
		dense, grey, wet	() (A) 	9	SS	77		日日	. 84				(з×	ONP			9 52
	1	(GLACIAL TILL)	- 11 J	- T				に目										
			1 0	1		95/	10 -	」目	:†								9.8m:	auger grinding
	1			10	SS	95 / 225mm		目	· ·]				<u>ا</u>	×	0			
								<u> </u> ∶⊟:	83								10.2m	n: auger grinding
	1	at 10.7 m, some clay, trace shale	io.	<u> </u>		100 /			•.								10.7m	n: auger grinding, ed at SS11 due to
	82.3	fragments	「日本	11	SS	103 / 225mm	11 -						L C	×	0		limited	ed at SS11 due to d site access
-	11.0		1964-6	.4		•					1	1						
		END OF BOREHOLE								GROL	JNDWA	ATER L	EVEL	s				
									da	e	<u>dept</u>	th (m)		<u>eleva</u>	tion (m	D)		
		Contained drill water upon completion of							Oct 28, Nov 12			l.6 l.6			38.7 38.7			
		drilling. Unstabilized water level not measured. Borehole was open.							Nov 26	2021	4	1.6		8	38.7			
		·							Dec 10 Dec 23	2021		l.6 l.5			38.7 38.8			
		38 mm dia. monitoring well installed. No. 10 screen							Jan 7, 2			1.5 1.6			38.7 38.7			
									,									

Page 1 of 1

Date Started : Oct 6, 2021 Position : E: 626716, N: 4833219 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 107

File	No.	: 21-199				Proj	ect :	340 - 3	76 Duf	ferin St, Toronto	Client : Hullmark Developments Limited			
ler		stratigraphy	-		samp	es	(L			undrained shear strength (kPa) O unconfined + field vane	headspace vapour (ppm) × hexane isobutylene	lab data		
drill method : LA rig w/ full hammer	elev depth (m)	description	graphic log	number	type	SPT N-value	depth scale (m)	well details	elevation (m)		Image: The second se	e and comments grain size distribution (%) (MIT) GR SA SI CL		
	90.5	150mm CONCRETE					0-		-			-		
	0.2	150mm AGGREGATE							_					
	0.3	SILTY SAND, compact, brown, moist		1	SS	24			- 90 -			- <u>SS1:</u> H-Ms, Metals, ORPs, Dioxins -		
	-	at 1.5 m, transitioning to grey, dense		2	SS	27	1-		- - - -		XI O	- <u>SS2:</u> PAHs -		
	-	at 1.5 m, transitioning to grey, dense		3	SS	35	2-		- 89 - -		D× O			
hollow stem augers (med) 0D=175 mm	-			4	SS	37			- - - 			- - <u>SS4:</u> BTEX, H-Ms, Metals, - ORPs, PHCs, VOCs -		
; wollow	-	at 3.0 m, trace clay, wet		5	SS	44	3-		· - - - - -		п× о	- 0 72 26 2_ <u>SS5:</u> BTEX, PHCs, VOCs		
	-						4 -							
	- - 85.5 5.2			6	SS	52	5 -				лх о	4.6m: hole was terminated at target depth because auger got stuck SS6: BTEX, PHCs		

END OF BOREHOLE

Water level and cave not measured upon completion of drilling.

38 mm dia. monitoring well installed. No. 10 screen

GRO	UNDWATER LEV	ELS
date	<u>depth (m)</u>	elevation (m)
Oct 26, 2021	2.3	88.4
Nov 4, 2021	2.2	88.5
Nov 12, 2021	2.2	88.5
Nov 16, 2021	2.3	88.4
Nov 26, 2021	2.2	88.5
Dec 10, 2021	2.2	88.5
Dec 23, 2021	2.2	88.5
Jan 7, 2022	2.2	88.5

Date Started : Oct 4, 2021 Position : E: 626753, N: 4833230 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 108

	stratigraphy			samp	65	-	1	undrained shear strength (kPa) headspace vapour (ppm)	
<u>lev</u> pth m)	description	aphic log	mber			depth scale (m) well details	elevation (m)	O unconfined	୍ଷଳ and
1.4	TOP OF SLAB		nu	typ	SP		, e	10 20 30 40 10 20 30	GR SA
1.2	175mm CONCRETE					0	_		
0.2	125mm AGGREGATE	M					01		
0.3	SILTY SAND, compact to dense, brown, moist		1	SS	12	-	- 91 -	TX O	<u>SS1:</u> PAHs, PCBs
-	at 0.9 m, dense		2	SS	34	1	- - - 90		<u>SS2;</u> H-Ms, Metals, ORF 1.2m: auger grinding
-	at 1.5 m, grey, compact		3A	SS			_	m× o	observed
_	at 1.8 m, brown		3B	SS	19	- 2-	-	■ × O	<u>SS3A:</u> BTEX, PHCs, VOI <u>SS3B:</u> PAHs
-	at 2.3 m, transitioning to grey		4	SS	37		- 89 		<u>SS4:</u> BTEX, H-Ms, Meta ORPs, PHCs, VOCs
	at 3.0 m, sandy silt, trace clay, wet		5	SS	35	3		O	0 30
						4-			
_			6	SS	40	5-0-0			SS6: BTEX, PHCs, VOCs
_			•		80 /	- 6-	-		
ľ	n) 1.4 1.2 0.2 1.1/	n) 1.4 TOP OF SLAB 1.2 175mm CONCRETE 1.2 125mm AGGREGATE 1.3 SILTY SAND, compact to dense, brown, moist at 0.9 m, dense at 1.5 m, grey, compact at 1.8 m, brown at 2.3 m, transitioning to grey	n) 1.4 TOP OF SLAB 1.2 175mm CONCRETE 1.2 175mm AGGREGATE 1.2 125mm AGGREGATE 3.12 125mm AGGREGATE 3.12 125mm AGGREGATE 3.14 0.9 m, dense at 0.9 m, dense at 1.5 m, grey, compact at 1.8 m, brown at 2.3 m, transitioning to grey at 3.0 m, sandy silt, trace clay, wet	12 175mm CONCRETE 2 4 4 12 125mm AGGREGATE a 3 11 at 3.0 m, sandy silt, trace clay, wet 1 at 3.0 m, sandy silt, trace clay, wet 5	12 175mm CONCRETE 4 2 12 125mm AGGREGATE 6 3 11 SILTY SAND, compact to dense, brown, moist 1 1 SS at 0.9 m, dense 2 SS at 1.5 m, grey, compact 3A SS at 1.5 m, grey, compact at 1.8 m, brown 3B SS at 2.3 m, transitioning to grey 4 SS at 3.0 m, sandy silt, trace clay, wet 5 SS at 5 SS at 3.0 m, sandy silt, trace clay, wet 5 SS at 5 SS	1.4 TOP OF SLAB 5 è 2 5 è 2 5 è 1 5 è 1 5 è 1 5 è 1 5 è 1 5 è 1 5 è i 1 <	1.4 TOP OF SLAB 5 2 5 5 6 7 1 <	1.4 TOP OF SLAB 5 5 5 5 6 0 12 175mm CONCRETE 1 1 SS 12 -	1.4 TOP OF SLA8 B E F <

Water level and cave not measured upon completion of drilling.

38 mm dia. monitoring well installed. No. 10 screen

GRO	JNDWATER LEV	ELS
<u>date</u>	<u>depth (m)</u>	<u>elevation (m)</u>
Oct 26, 2021	3.5	87.9
Nov 4, 2021	3.6	87.8
Nov 12, 2021	3.7	87.7
Nov 16, 2021	3.6	87.8
Nov 26, 2021	3.6	87.8
Dec 10, 2021	3.6	87.8
Dec 23, 2021	3.6	87.8
Jan 7, 2022	3.7	87.7

BOREHOLE LOG 110

		-441- 1					40 - 376 Duf	undrained above strength (//Do) bestances yenour (nam)
mer		stratigraphy	1		samp	les	<u>م</u>	O unconfined
LA rig w/ full hammer	<u>elev</u> depth (m)	description	graphic log	number	type	SPT N-value	well details	opcode period intension ■ cal value ■ methane ■ opcode ■ cal value ■ methane 40 80 120 160 100 200 300 200 comments SPT N-values (shpf)
P	91.4	TOP OF SLAB		Ĕ	ty	SI		10 20 30 40 10 20 30 GR SA
⊦	91.2 0.2	150mm CONCRETE	¤ <				-	
╈	_91.1/ 0.3	150mm AGGREGATE					- 91	
	90.5	FILL, clayey silt, some sand, trace gravel, with oxidation staining, hard, brownish grey, moist		1	SS	30	-	BOO SS1: H-Ms, Metals, ORP PCBs
	0.9	SILTY SAND, with clayey silt pockets, dense, grey, moist		2	SS	34	- - - 90	BI O SS2: PAHs
				3	SS	43		DX O SS3: BTEX, H-Ms, Metal ORPs, PHCs, VOCs
				4	SS	33		DX O
0D=175 mm		at 3.0 m, sandy silt		5	SS	32	-88	B X O SSS: BTEX, PHCs, VOCs
		at 4.6 m, sand, some silt, trace clay, wet		6	SS	43		0 80 DX O SS6: BTEX, PHCs, VOCs
	- - - 84.7 6.7			7	SS	50	- - - 85 -	
		END OF BOREHOLE						
		Water level and cave not measured upon completion of drilling. 38 mm dia. monitoring well installed. No. 10 screen					<u>da</u> Oct 26 Nov 4, Nov 1 Nov 2 Dec 10 Dec 2 Jec 7	2021 3.5 87.9 2021 3.6 87.8 2021 3.6 87.8 2021 3.6 87.8 2021 3.6 87.8 2021 3.6 87.8 2021 3.6 87.8 2021 3.6 87.8 2021 3.6 87.8

Date Started : Oct 18, 2021 Position : E: 626729, N: 4833229 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 111

File	No.	: 21-199				Proj	ect :	340	- 37	'6 Duf	ferin St, T	oront	:o (Clier	it : Hullma	ark Dev	elopments Limited
		stratigraphy	1		samp	les	Ē				undrained shea O unconfined	ar strengt +	h (kPa) field vane	head	space vapour (pp × hexane D	m)] isobutylene	lab data
drill method : CME 55	<u>elev</u> depth (m)	description	graphic log	number	type	SPT N-value	depth scale (m)	olictola llott	well details	elevation (m)	pocket penetrom 40 80 SPT N-values (X dynamic cone	neter ■ 120 (bpf)	Lab Vane	mois	The methane 100 200 ture / plasticity PL MC		grain size distribution (%)
5g	93.4	GROUND SURFACE	5	Ĕ	ty		0.				10 20	30	40	_	10 20	30	GR SA SI C 0.2m: heavy drilling
Ī	_	100mm ASPHALT		1	SS	99 / 200mm				- 93				_	0		resistance. possible rock backfil inferred
(hu	_	FILL, sand, some cinders, some silt, trace gravel, trace brick fragments, trace wood fragments, inferred loose to compact, black,		2A 2B	SS	8	1.			- 				⊐× ¤	0		<u>SS1:</u> H-Ms, Metals, ORPs
hollow stem augers (skinny) 0D=110 mm	91.7 1.7 –	moist at 0.8 m, clayey silt pockets, loose at 1.2 m, sandy silt, trace clay, dark brown, [3A 3B	SS	16	2.			-				133 133	0		2A: BTEX, PAHs, PHCs, VOC: 2B: Dioxins
w stem au OD=110	-	compact at 1.5 m, orange and black staining SAND AND SILT, compact, brown, moist		4	SS	41				91 				180	0		<u>3B:</u> PHCs
ollor	-	at 2.3 m, dense to very dense, brown and grey		5	SS	55	3.	-		-90				R	0		<u>SS4:</u> H-Ms, Metals, ORPs, PAHs
	_						4 -			- 							<u>SS5:</u> PAHs
	-	at 4.6 m, silty sand		6	SS	43	5.		7	- 88				DR.	0		<u>SS6:</u> PHCs
	_	at 6.1 m, sand and silt, trace clay, grey, very dense, wet		7	SS	49	6.			- 87				<u>x</u>			_
mud rotary small — OD=100 mm	-						7.	-		- - 86							_
D= OD=	_			8	SS	52	8.			- - 85				¢ ×	0		SS8: BTEX, PHCs, VOCs
	84.3						9.	-		-							
	9.1	SAND AND SILT, some clay, trace gravel, very dense, grey, moist (GLACIAL TILL)	0	9	SS	57	10 -			- 84 -				Ē Ā	0		4 47 38 1
X	_	at 10.7 m, clayey silt, trace gravel, trace	¢,	10		, 90 / 150mn	111-	ł		- 83 -				50	0		<u>SS10:</u> BTEX, PHCs
	_	sand, trace shale fragments	0		RUN					- 82							split spoon extended to 36.2 feet and overcored
()	-		0	2	RUN		12 -	-		- 81							-
Rock coring (HQ) 0D=96 mm	80.2 13.2	GEORGIAN BAY FORMATION (See rock core log for details)		3	RUN		13 -			- 80							-
Ro	-	at 14.7 m, transition to sound bedrock		4	RUN		14 -			- 79							at 14.7 m, top of sound bedrock
					NON		15.			- 78							

END OF BOREHOLE

Borehole was filled with drill water upon completion of drilling.

50 mm dia. monitoring well installed. No. 10 screen

GROU	JNDWATER LEV	/ELS
date	<u>depth (m)</u>	elevation (m)
Oct 26, 2021	5.5	87.9
Oct 28, 2021	5.7	87.7
Nov 4, 2021	5.6	87.8
Nov 12, 2021	5.7	87.7
Nov 16, 2021	5.6	87.8
Nov 26, 2021	5.6	87.8
Dec 10, 2021	5.6	87.8
Dec 23, 2021	5.6	87.8
Jan 7, 2022	5.6	87.8

Date Started : Oct 18, 2021 Position : E: 626729, N: 4833229 (UTM 17T) Elev. Datum : Geodetic

ROCK CORE LOG 111

Fil	e No.	• No. : 21-199		Pro	ject :	Iullmark Developments Limited				
depth (m)	graphic log	stratigraphy Rock coring started at 10.8m below grade	шп <u>elev</u> depth (m) 82.6	recovery	elevation (m)	shale weathering zones	UCS (MPa) 5 25 50 100 250 estimated strength Tr & & & & & & & & & & & & & & & & & & &	natural fracture frequency	laboratory testing	notes and comments
- 11	e e	SAND AND SILT, some clay, trace gravel, very dense, grey, moist (GLACIAL TILL)	10.8 R1	TCR = 100% SCR = 0% RQD = 0%	-					11.1 / 82.3 - 11.2 / 82.2m: SM clay
- - - 12 -	6 0 6		R2	TCR = 100% SCR = 0% RQD = 0%	82			N/A		11.9 / 81.5 - 12.0 / 81.4m: SM clay 81
- 13		GEORGIAN BAY FORMATION Shale, grey, thinly bedded, weak; joints are horizontal, gapped, planar; limestone, light grey, very thinly bedded to thinly bedded, medium strong	12.7 R3	TCR = 100% SCR = 53% RQD = 28%	- - 80 - - -			Wz5 64		80 13.6 / 79.8 - 13.6 / 79.8m : rubbalized zone (50 mm)
		Overall shale: 74%, limestone: 26% at 14.7 m (Elev. 78.7 m), transition to sound	79.2 14.2		79			3		14.3 / 79.1 - 14.3 / 79.1m: SM clay 79 14.5 / 78.9 - 14.6 / 78.8m: SM clay
- - 15 -		rock Run 3 : 30% limestone 70% shale	R4	TCR = 100 % SCR = 90 % RQD = 53 %	- - - 78 -			2 3		78
		Run 4 : 22% limestone 78% shale	77.7 15.7m		-			3		

END OF COREHOLE

Date Started : Oct 25, 2021 Position : E: 626742, N: 4833207 (UTM 17T) Elev. Datum : Geodetic

BOREHOLE LOG 117

		stratigraphy			samp	les	-			undrained	l shear stre	ength (kF	Pa)		ice vapour		lah dat-
┢	-+	Stratigraphy		+	Janp		depth scale (m)	is		 unconfine pocket pe 	d netrometer	+ field v ■ Lab V	ane ane	×	hexane meth	isobutylene ane	lab data ভূভু and
	<u>elev</u> depth	description	boj			SPT N-value	ı scal	well details	elevation (m)	40 SPT N-val		120 1	60		00 200 e/plasticit		and and comments and comments and and and and and and comments and and and and and and and and
CME 55	(m)	uescription	graphic log	number	ě	ź	lepth	vella	eleva	×dynamie)	P	L MC	LL	grain siz distribution (MIT)
CME	93.3	GROUND SURFACE	gra	nu	type	SP	0-		Ű	10	20	30 4	10	1	0 20	30	GR SA
1	_	100mm ASPHALT		1A			1.		-				D				
	-	FILL, silty sand, trace gravel, trace clay, trace asphalt, trace brick fragments, loose to compact, black		1B	SS	16			-93 -		/		D		0		1A: PAHs, Dioxins
	_	at 0.8 m, sandy silt, clayey, grey and orange		8					-								<u>1B:</u> BTEX, PHCs
	-			2	SS	5	1-		- 92				D	3	0		<u>SS2:</u> BTEX, H-Ms, Meta ORPs, VOCs
	_								- 52								
	_			3	SS	9	2-		-				D	3	0		
╞	91.0 2.3	SILTY SAND, dense, brown, moist							- 91								-
	-			4	SS	43			-				E	30			<u>SS4:</u> H-Ms, Metals, ORI
	-	at 3.0 m, to grey					3-		-								
	-			5	SS	41			- 90 -				Ð	<u>s</u>			<u>SS5:</u> PAHs
mm	-						4-	- - 20 20	-								
0D=215 mm	-						·		- 89								-
	-																
	_			6	SS	36	5-						L	κ.	C		
	-						·		88 								_ ∑
	_						6-		.] 								
	-	at 6.1 m, grey, wet		7	SS	31			-87				Г) X		0	_
	-					-											<u>SS7:</u> BTEX, PHCs
	_						7 -										
	_																-
	-	at 7.6 m, trace clay, trace gravel		8	SS	32	8-		-				C	×	0		<u>SS8:</u> BTEX, PHCs, VOC
	85.1_ 8.2						J		- [
		END OF BOREHOLE							date		UNDWA dept	ATER L <u>h (m)</u>			tion (m)		
		Unstabilized water level measured at 5.5 m below ground surface; open upon completion of drilling.							Oct 29, 2 Nov 4, 2 Nov 12,	2021 021 2021	5 5 5	.3 .3 .3		8 8 8	8.0 8.0 8.0		
		50 mm dia. monitoring well installed. No. 10 screen							Nov 16, Nov 26, Dec 10, Dec 23,	2021 2021	5	.0 .3 .3		8 8	8.3 8.0 8.0 8.1		

APPENDIX B

Slug Test Analysis Report
Project: 340-376 Dufferin Street

Number: 21-199

Client: Hullmark Developments Limited

320

Location: Toronto, Ontario	Slug Test: BH103D-RHT	Test Well: BH103D
Test Conducted by: VT		Test Date: 2021-10-26
Analysis Performed by: AG	Bouwer & Rice	Analysis Date: 2021-11-04
Aquifer Thickness: 7.80 m		

 O
 64
 128
 192
 256

 1E-2

 0
 1E-2

 1
 1

 0
 1E-2

 1
 1

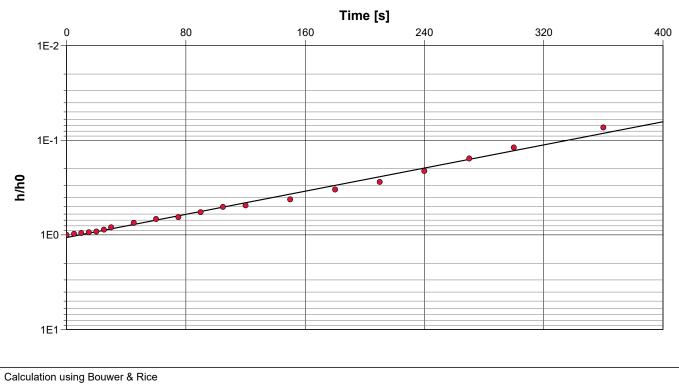
 0
 1

 1
 1

1E0

Calculation using Bouwer & Rice

Calculation asing Beawer a rai					
Observation Well	Hydraulic Conductivity				
	[m/s]				
BH103D	1.46 × 10 ⁻⁶				


Slug Test Analysis Report Project: 340-376 Dufferin Street

Project. 340-376 Duilerin Sta

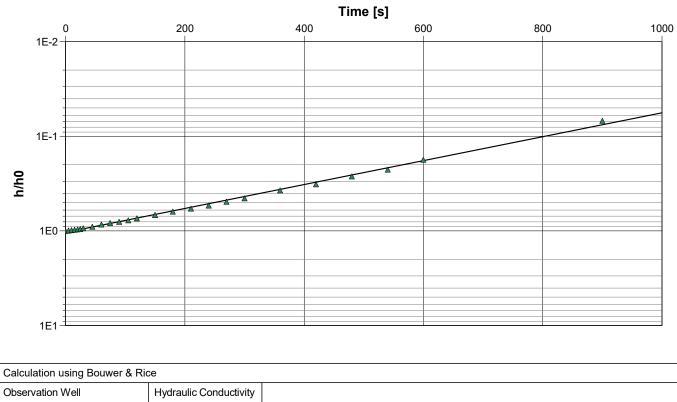
Number: 21-199

Client: Hullmark Developments Limited

Location: Toronto, Ontario	Slug Test: BH110-RHT	Test Well: BH110
Test Conducted by: VT		Test Date: 2021-10-26
Analysis Performed by: AG	Bouwer & Rice	Analysis Date: 2021-11-05
Aquifer Thickness: 5.20 m	· ·	•

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH110	1.72 × 10 ⁻⁶	

GROUNDED ENGINEERING


Slug Test Analysis Report

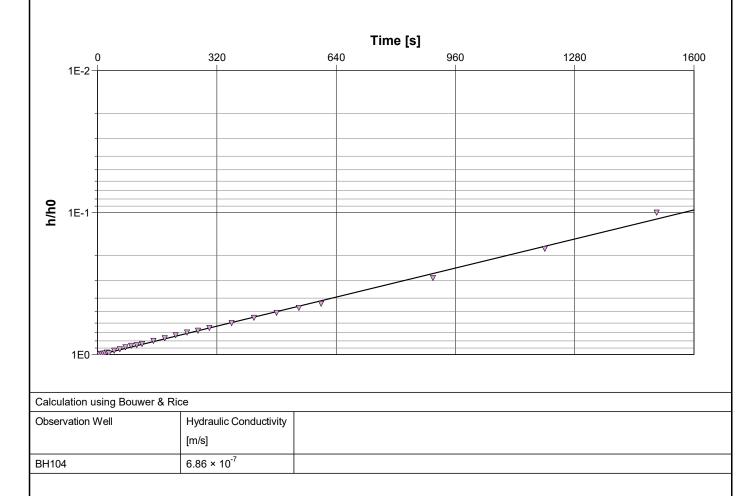
Project: 340-376 Dufferin Street

Number: 21-199

Client: Hullmark Developments Limited

Location: Toronto, Ontario	Slug Test: BH108-RHT	Test Well: BH108
Test Conducted by: VT		Test Date: 2021-10-26
Analysis Performed by: AG	Bouwer & Rice	Analysis Date: 2021-11-05
Aquifer Thickness: 5.30 m		

Observation Well	Hydraulic Conductivity	
	[m/s]	
BH108	7.18 × 10 ⁻⁷	


Slug Test Analysis Report
Project: 340-376 Dufferin Street

Number: 21-199

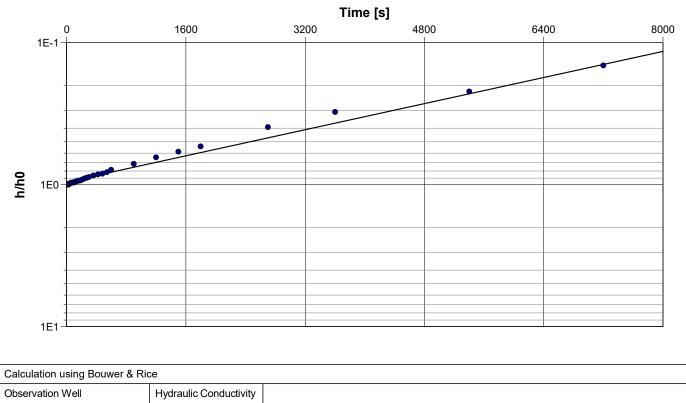
Client: Hullmark Developments Limited

		I
Location: Toronto, Ontario	Slug Test: BH104-RHT	Test Well: BH104
Test Conducted by: VT		Test Date: 2021-10-29
Analysis Performed by: AG	Bouwer & Rice	Analysis Date: 2021-11-05
A suifer Thiskness, 11 50 m		

Aquifer Thickness: 14.50 m

Slug Test Analysis Report GROUNDED Project: 340-376 Dufferin Street Number: 21-199 ENGINEERING Hullmark Developments Limited Client: Location: Toronto, Ontario Slug Test: BH105-RHT Test Well: BH105 Test Conducted by: DI Test Date: 2021-10-29 Analysis Performed by: AG Bouwer & Rice Analysis Date: 2021-11-05 Aquifer Thickness: 15.50 m Time [s] 2000 4000 6000 8000 10000 0 04/H 1E0 Calculation using Bouwer & Rice **Observation Well** Hydraulic Conductivity [m/s] 2.88 × 10⁻⁸ BH105

Slug Test Analysis Report GROUNDED Project: 340-376 Dufferin Street Number: 21-199 ENGINEERING Hullmark Developments Limited Client: Location: Toronto, Ontario Slug Test: BH106(2) Test Well: BH106(2) Test Conducted by: DK Test Date: 2021-12-16 Analysis Performed by: Bouwer & Rice Analysis Date: 2021-12-17 Aquifer Thickness: 10.60 m Time [s] 40 20 60 80 100 0 1E-1 04/H 1E0-Calculation using Bouwer & Rice **Observation Well** Hydraulic Conductivity [m/s] 4.78 × 10⁻⁶ BH106(2)

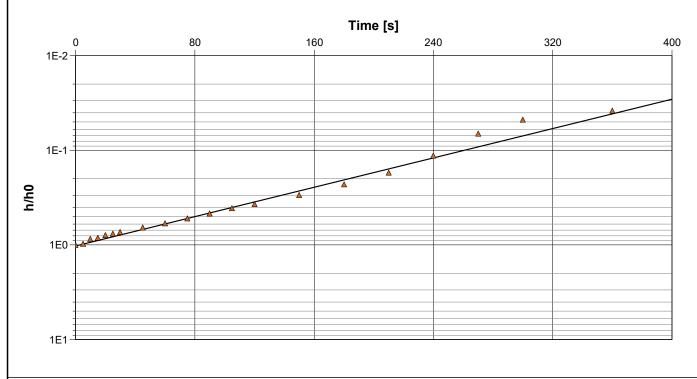


Slug Test Analysis Report Project: 340-376 Dufferin Street

Number: 21-199

Client: Hullmark Developments Limited

Location: Toronto, Ontario	Slug Test: BH111-RHT	Test Well: BH111
Test Conducted by: DI		Test Date: 2021-10-28
Analysis Performed by: AG	Bouwer and Rice	Analysis Date: 2021-11-05
Aquifer Thickness: 15.60 m		

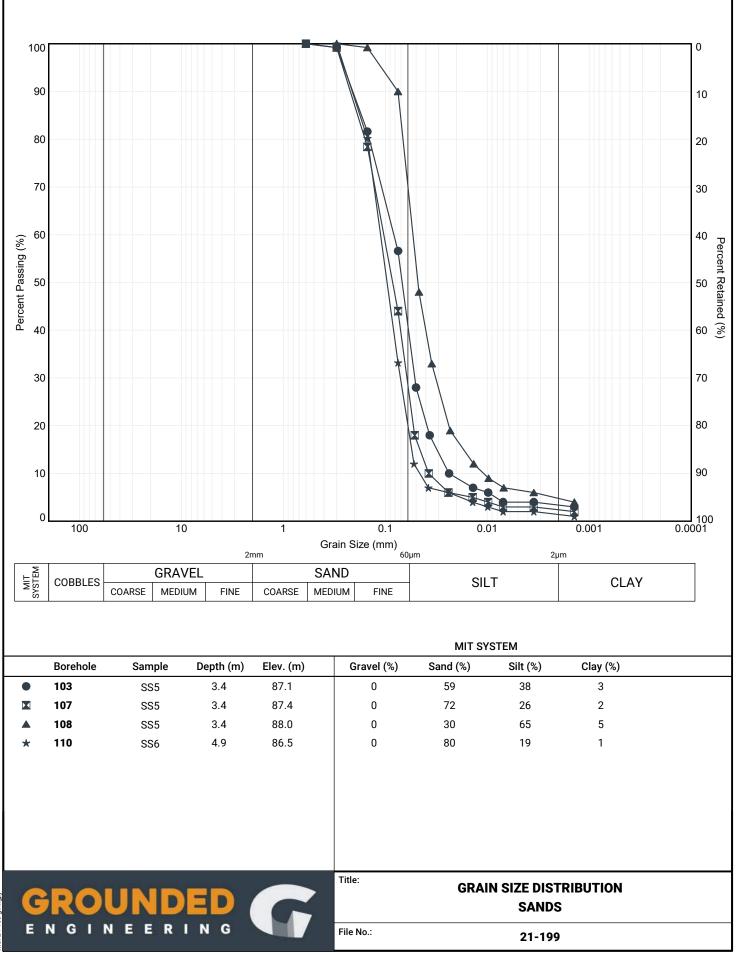

Slug Test Analysis Report Project: 340-376 Dufferin Street

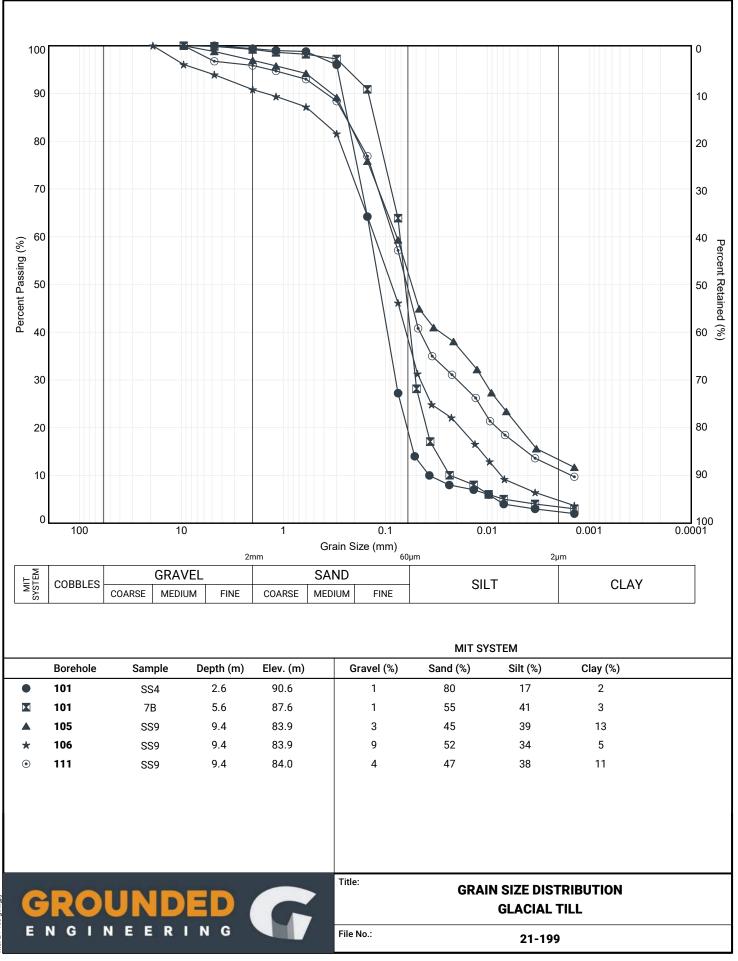
Project. 340-376 Dullerin Stre

Number: 21-199

Client: Hullmark Developments Limited

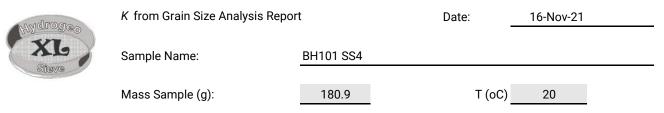
Location: Toronto, Ontario	Slug Test: BH117-RHT	Test Well: BH117
Test Conducted by: DI		Test Date: 2021-10-29
Analysis Performed by: AG	Bouwer & Rice	Analysis Date: 2021-11-05
Aquifer Thickness: 7.65 m		

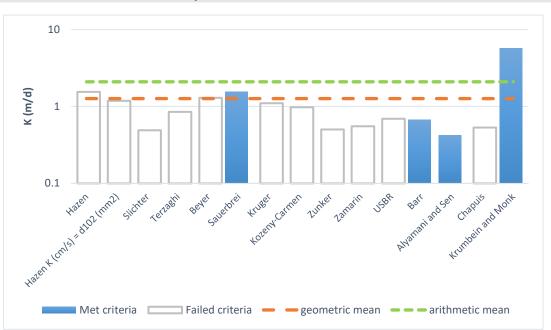



Calculation using Bouwer & Rice

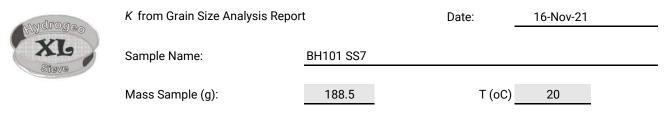
Observation Well	Hydraulic Conductivity [m/s]	
BH117	3.91 × 10 ⁻⁶	

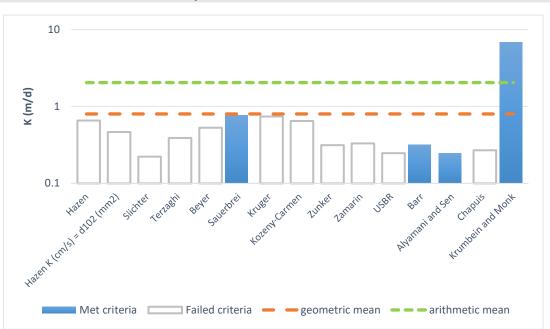
APPENDIX C





APPENDIX D

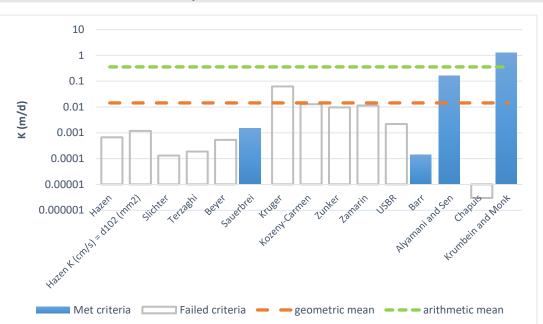



Moderately well sorted sand with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	1.8E-03	1.8E-05	1.55	
Hazen K (cm/s) = d ₁₀ (mm)	1.4E-03	1.4E-05	1.18	
Slichter	5.7E-04	5.7E-06	0.49	
Terzaghi	9.8E-04	9.8E-06	0.85	
Beyer	1.5E-03	1.5E-05	1.29	
Sauerbrei	1.8E-03	1.8E-05	1.56	
Kruger	1.3E-03	1.3E-05	1.10	
Kozeny-Carmen	1.1E-03	1.1E-05	0.98	
Zunker	5.8E-04	5.8E-06	0.50	
Zamarin	6.4E-04	6.4E-06	0.55	
USBR	8.0E-04	8.0E-06	0.69	
Barr	7.8E-04	7.8E-06	0.68	
Alyamani and Sen	4.9E-04	4.9E-06	0.42	
Chapuis	6.2E-04	6.2E-06	0.53	
Krumbein and Monk	6.6E-03	6.6E-05	5.73	
geometric mean	1.5E-03	1.5E-05	1.27	
arithmetic mean	2.4E-03	2.4E-05	2.10	

Moderately well sorted sand with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	7.6E-04	7.6E-06	0.66	
Hazen K (cm/s) = d_{10} (mm)	5.4E-04	5.4E-06	0.46	
Slichter	2.6E-04	2.6E-06	0.22	
Terzaghi	4.5E-04	4.5E-06	0.39	
Beyer	6.1E-04	6.1E-06	0.53	
Sauerbrei	8.9E-04	8.9E-06	0.77	
Kruger	8.6E-04	8.6E-06	0.74	
Kozeny-Carmen	7.5E-04	7.5E-06	0.65	
Zunker	3.6E-04	3.6E-06	0.31	
Zamarin	3.8E-04	3.8E-06	0.33	
USBR	2.9E-04	2.9E-06	0.25	
Barr	3.7E-04	3.7E-06	0.32	
Alyamani and Sen	2.8E-04	2.8E-06	0.25	
Chapuis	3.1E-04	3.1E-06	0.27	
Krumbein and Monk	7.9E-03	7.9E-05	6.86	
geometric mean	9.3E-04	9.3E-06	0.80	
arithmetic mean	2.4E-03	2.4E-05	2.05	



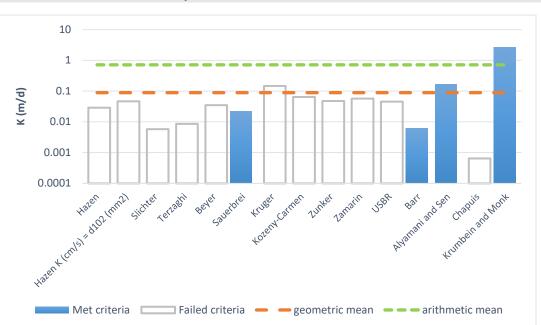
 K from Grain Size Analysis Report
 Date:
 16-Nov-21

 Sample Name:
 BH105 SS9

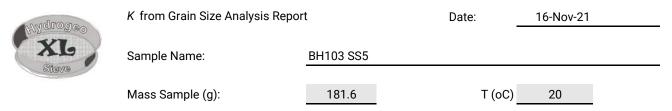
 Mass Sample (g):
 258.3
 T (oC)

Poorly sorted silt with fines

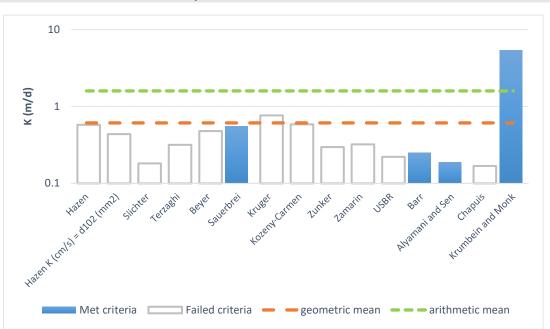
Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	7.8E-07	7.8E-09	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	1.4E-06	1.4E-08	0.00	
Slichter	1.5E-07	1.5E-09	0.00	
Terzaghi	2.2E-07	2.2E-09	0.00	
Beyer	6.2E-07	6.2E-09	0.00	
Sauerbrei	1.8E-06	1.8E-08	0.00	
Kruger	7.3E-05	7.3E-07	0.06	
Kozeny-Carmen	1.5E-05	1.5E-07	0.01	
Zunker	1.1E-05	1.1E-07	0.01	
Zamarin	1.3E-05	1.3E-07	0.01	
USBR	2.6E-06	2.6E-08	0.00	
Barr	1.6E-07	1.6E-09	0.00	
Alyamani and Sen	1.9E-04	1.9E-06	0.17	
Chapuis	3.5E-09	3.5E-11	0.00	
Krumbein and Monk	1.5E-03	1.5E-05	1.28	
geometric mean	1.7E-05	1.7E-07	0.01	
arithmetic mean	4.2E-04	4.2E-06	0.36	

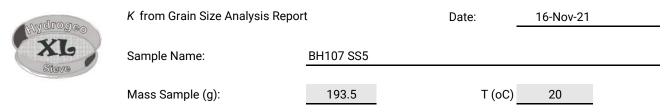


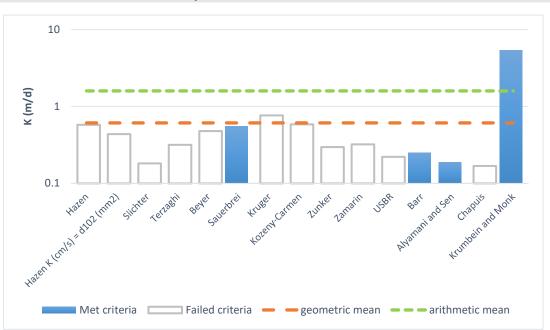
 K from Grain Size Analysis Report
 Date:
 16-Nov-21

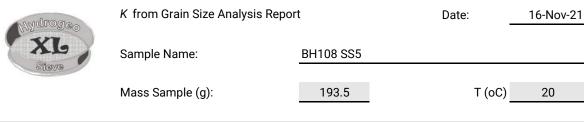

 Sample Name:
 BH105 SS9

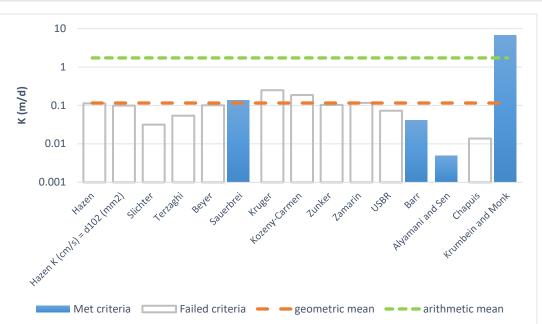
 Mass Sample (g):
 357.1
 T (oC)


Poorly sorted sand with fines


Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	3.3E-05	3.3E-07	0.03	
Hazen K (cm/s) = d ₁₀ (mm)	5.4E-05	5.4E-07	0.05	
Slichter	6.7E-06	6.7E-08	0.01	
Terzaghi	9.9E-06	9.9E-08	0.01	
Beyer	4.0E-05	4.0E-07	0.03	
Sauerbrei	2.6E-05	2.6E-07	0.02	
Kruger	1.7E-04	1.7E-06	0.15	
Kozeny-Carmen	7.4E-05	7.4E-07	0.06	
Zunker	5.5E-05	5.5E-07	0.05	
Zamarin	6.6E-05	6.6E-07	0.06	
USBR	5.2E-05	5.2E-07	0.05	
Barr	7.3E-06	7.3E-08	0.01	
Alyamani and Sen	2.0E-04	2.0E-06	0.17	
Chapuis	7.5E-07	7.5E-09	0.00	
Krumbein and Monk	3.1E-03	3.1E-05	2.67	
geometric mean	1.0E-04	1.0E-06	0.09	
arithmetic mean	8.3E-04	8.3E-06	0.72	


Moderately well sorted sand with fines

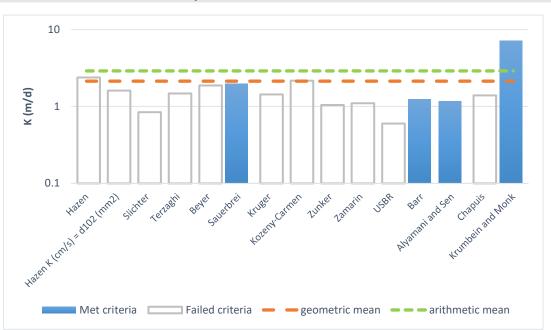

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	6.7E-04	6.7E-06	0.58	
Hazen K (cm/s) = d ₁₀ (mm)	5.1E-04	5.1E-06	0.44	
Slichter	2.1E-04	2.1E-06	0.18	
Terzaghi	3.7E-04	3.7E-06	0.32	
Beyer	5.5E-04	5.5E-06	0.48	
Sauerbrei	6.4E-04	6.4E-06	0.55	
Kruger	8.9E-04	8.9E-06	0.77	
Kozeny-Carmen	6.8E-04	6.8E-06	0.58	
Zunker	3.4E-04	3.4E-06	0.30	
Zamarin	3.7E-04	3.7E-06	0.32	
USBR	2.6E-04	2.6E-06	0.22	
Barr	2.9E-04	2.9E-06	0.25	
Alyamani and Sen	2.2E-04	2.2E-06	0.19	
Chapuis	1.9E-04	1.9E-06	0.17	
Krumbein and Monk	6.2E-03	6.2E-05	5.38	
geometric mean	7.1E-04	7.1E-06	0.61	
arithmetic mean	1.8E-03	1.8E-05	1.59	


Moderately well sorted sand with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	6.7E-04	6.7E-06	0.58	
Hazen K (cm/s) = d ₁₀ (mm)	5.1E-04	5.1E-06	0.44	
Slichter	2.1E-04	2.1E-06	0.18	
Terzaghi	3.7E-04	3.7E-06	0.32	
Beyer	5.5E-04	5.5E-06	0.48	
Sauerbrei	6.4E-04	6.4E-06	0.55	
Kruger	8.9E-04	8.9E-06	0.77	
Kozeny-Carmen	6.8E-04	6.8E-06	0.58	
Zunker	3.4E-04	3.4E-06	0.30	
Zamarin	3.7E-04	3.7E-06	0.32	
USBR	2.6E-04	2.6E-06	0.22	
Barr	2.9E-04	2.9E-06	0.25	
Alyamani and Sen	2.2E-04	2.2E-06	0.19	
Chapuis	1.9E-04	1.9E-06	0.17	
Krumbein and Monk	6.2E-03	6.2E-05	5.38	
geometric mean	7.1E-04	7.1E-06	0.61	
arithmetic mean	1.8E-03	1.8E-05	1.59	

Poorly sorted silt with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	1.3E-04	1.3E-06	0.11	
Hazen K (cm/s) = d ₁₀ (mm)	1.1E-04	1.1E-06	0.10	
Slichter	3.7E-05	3.7E-07	0.03	
Terzaghi	6.3E-05	6.3E-07	0.05	
Beyer	1.2E-04	1.2E-06	0.10	
Sauerbrei	1.6E-04	1.6E-06	0.14	
Kruger	2.9E-04	2.9E-06	0.25	
Kozeny-Carmen	2.2E-04	2.2E-06	0.19	
Zunker	1.2E-04	1.2E-06	0.10	
Zamarin	1.4E-04	1.4E-06	0.12	
USBR	8.5E-05	8.5E-07	0.07	
Barr	4.7E-05	4.7E-07	0.04	
Alyamani and Sen	5.7E-06	5.7E-08	0.00	
Chapuis	1.6E-05	1.6E-07	0.01	
Krumbein and Monk	7.8E-03	7.8E-05	6.75	
geometric mean	1.3E-04	1.3E-06	0.12	
arithmetic mean	2.0E-03	2.0E-05	1.73	



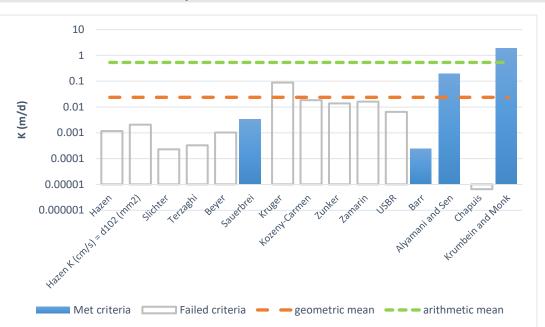
 K from Grain Size Analysis Report
 Date:
 16-Nov-21

 Sample Name:
 BH110 SS6

 Mass Sample (g):
 172.8
 T (oC)

Moderately well sorted sand with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	2.8E-03	2.8E-05	2.38	
Hazen K (cm/s) = d ₁₀ (mm)	1.9E-03	1.9E-05	1.61	
Slichter	9.7E-04	9.7E-06	0.84	
Terzaghi	1.7E-03	1.7E-05	1.48	
Beyer	2.2E-03	2.2E-05	1.88	
Sauerbrei	2.3E-03	2.3E-05	1.97	
Kruger	1.7E-03	1.7E-05	1.43	
Kozeny-Carmen	2.5E-03	2.5E-05	2.17	
Zunker	1.2E-03	1.2E-05	1.04	
Zamarin	1.3E-03	1.3E-05	1.10	
USBR	6.9E-04	6.9E-06	0.60	
Barr	1.4E-03	1.4E-05	1.25	
Alyamani and Sen	1.3E-03	1.3E-05	1.17	
Chapuis	1.6E-03	1.6E-05	1.39	
Krumbein and Monk	8.4E-03	8.4E-05	7.23	
geometric mean	2.5E-03	2.5E-05	2.13	
arithmetic mean	3.4E-03	3.4E-05	2.90	



 K from Grain Size Analysis Report
 Date:
 16-Nov-21

 Sample Name:
 BH111 SS9

 Mass Sample (g):
 301.5
 T (oC)

Poorly sorted sand with fines

Estimation of Hydraulic Conductivity	cm/s	m/s	m/d	de
Hazen	1.4E-06	1.4E-08	0.00	
Hazen K (cm/s) = d ₁₀ (mm)	2.4E-06	2.4E-08	0.00	
Slichter	2.7E-07	2.7E-09	0.00	
Terzaghi	3.8E-07	3.8E-09	0.00	
Beyer	1.2E-06	1.2E-08	0.00	
Sauerbrei	3.9E-06	3.9E-08	0.00	
Kruger	1.0E-04	1.0E-06	0.09	
Kozeny-Carmen	2.1E-05	2.1E-07	0.02	
Zunker	1.6E-05	1.6E-07	0.01	
Zamarin	1.9E-05	1.9E-07	0.02	
USBR	7.6E-06	7.6E-08	0.01	
Barr	2.9E-07	2.9E-09	0.00	
Alyamani and Sen	2.3E-04	2.3E-06	0.20	
Chapuis	7.6E-09	7.6E-11	0.00	
Krumbein and Monk	2.3E-03	2.3E-05	1.95	
geometric mean	2.8E-05	2.8E-07	0.02	
arithmetic mean	6.2E-04	6.2E-06	0.54	

APPENDIX E

Grounded Engineering Inc ATTN: Shelby Plant 1 BANIGAN DRIVE TORONTO ON M4H 1G3 Date Received: 01-NOV-21 Report Date: 09-NOV-21 14:54 (MT) Version: FINAL

Client Phone: 647-264-7928

Certificate of Analysis

Lab Work Order #: L2657859 Project P.O. #: NOT SUBMITTED

Project P.O. #: Job Reference: C of C Numbers: Legal Site Desc:

390 DUFFERIN STREET

21-199

mindaluarhold

Amanda Overholster Account Manager

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 5730 Coopers Avenue, Unit #26 , Mississauga, ON L4Z 2E9 Canada | Phone: +1 905 507 6910 | Fax: +1 905 507 6927 ALS CANADA LTD Part of the ALS Group An ALS Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Summary of Guideline Exceedances

Guideline ALS ID	Client ID	Grouping	Analyte	Result	Guideline Limit	Unit
(No pai	rameter exceedances)	narge Sewer By-Law 100-2016 (FEB 4,2016) narge Sewer By-Law 100-2016 (FEB 4,2016)	-			
	onto Sanitary Disch	large Sewer By-Law 100-2010 (1 LB 4,2010)	- Ontario Toronto Storin Sewer	Dy-Law		
L2657859-1	SW-UF-BH117	Physical Tests Total Metals	Total Suspended Solids Manganese (Mn)-Total	28.0 0.457	15 0.05	mg/L mg/L

L2657859 CONT'D.... Job Reference: 21-199 PAGE 3 of 17 09-NOV-21 14:54 (MT)

Physical Tests - WATER

	Lab ID L2657859-1 Sample Date 01-NOV-21 Sample ID SW-UF-BH17
Analyte	Guide Limits Unit #1 #2
рН	pH units 6.00- 6.0-9.5 7.45 11.5
Total Suspended Solids	mg/L 350 15 28.0

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2657859 CONT'D.... Job Reference: 21-199 PAGE 4 of 17 09-NOV-21 14:54 (MT)

Anions and Nutrients - WATER

		eample Bate		L2657859-1 01-NOV-21 SW-UF-BH117	
Analyte	Unit	Guide #1	Limits #2		
Fluoride (F)	mg/L	10	-	<0.10 ^{DLDS}	
Total Kjeldahl Nitrogen	mg/L	100	-	0.540	
Phosphorus, Total	mg/L	10	0.4	0.0156	

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2657859 CONT'D Job Reference: 21-199 PAGE 5 of 17 09-NOV-21 14:54 (MT)

Cyanides - WATER

		Sampl		L2657859-1 01-NOV-21 SW-UF-BH117
Analyte	Unit	Guide #1	Limits #2	
Cyanide, Total	mg/L	2	0.02	<0.0020

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2657859 CONT'D.... Job Reference: 21-199 PAGE 6 of 17 09-NOV-21 14:54 (MT)

Bacteriological Tests - WATER

	s	Sampl		L2657859-1 01-NOV-21 SW-UF-BH117
			Limits	
Analyte	Unit	#1	#2	
E. Coli	CFU/100m L	-	200	0

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2657859 CONT'D Job Reference: 21-199 PAGE 7 of 17 09-NOV-21 14:54 (MT)

Total Metals - WATER

		Sampl	Lab ID e Date ple ID	
Analyte	Unit	Guide #1	Limits #2	
Aluminum (Al)-Total	mg/L	50	-	0.778
Antimony (Sb)-Total	mg/L	5	-	0.00013
Arsenic (As)-Total	mg/L	1	0.02	0.00063
Cadmium (Cd)-Total	mg/L	0.7	0.008	0.000038
Chromium (Cr)-Total	mg/L	4	0.08	0.00209
Cobalt (Co)-Total	mg/L	5	-	0.00196
Copper (Cu)-Total	mg/L	2	0.04	0.0026
Lead (Pb)-Total	mg/L	1	0.12	0.00114
Manganese (Mn)-Total	mg/L	5	0.05	0.457
Mercury (Hg)-Total	mg/L	0.01	0.0004	<0.0000050
Molybdenum (Mo)-Total	mg/L	5	-	0.000708
Nickel (Ni)-Total	mg/L	2	0.08	0.00383
Selenium (Se)-Total	mg/L	1	0.02	0.00494
Silver (Ag)-Total	mg/L	5	0.12	<0.000050
Tin (Sn)-Total	mg/L	5	-	0.00017
Titanium (Ti)-Total	mg/L	5	-	0.0404
Zinc (Zn)-Total	mg/L	2	0.04	0.0095

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2657859 CONT'D Job Reference: 21-199 PAGE 8 of 17 09-NOV-21 14:54 (MT)

Speciated Metals - WATER

		Sampl		L2657859-1 01-NOV-21 SW-UF-BH117
Analyte	Unit	Guide #1	Limits #2	
Chromium, Hexavalent	mg/L	2	0.04	<0.00050

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2657859 CONT'D Job Reference: 21-199 PAGE 9 of 17 09-NOV-21 14:54 (MT)

Aggregate Organics - WATER

		Sample		L2657859-1 01-NOV-21 SW-UF-BH117
Analyte	Unit	Guide #1	Limits #2	
BOD	mg/L	300	15	<3.0 BODL
Oil and Grease, Total	mg/L	-	-	<5.0
Animal/Veg Oil & Grease	mg/L	150	-	<5.0
Mineral Oil and Grease	mg/L	15	-	<2.5
Phenols (4AAP)	mg/L	1.0	0.008	<0.0010

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2657859 CONT'D.... Job Reference: 21-199 PAGE 10 of 17 09-NOV-21 14:54 (MT)

Volatile Organic Compounds - WATER

		Sample		L2657859-1 01-NOV-21 SW-UF-BH117
Analyte	Unit	Guide #1	Limits #2	
Benzene	ug/L	10	2	<0.50
Chloroform	ug/L	40	2	<1.0
1,2-Dichlorobenzene	ug/L	50	5.6	<0.50
1,4-Dichlorobenzene	ug/L	80	6.8	<0.50
cis-1,2-Dichloroethylene	ug/L	4000	5.6	<0.50
Dichloromethane	ug/L	2000	5.2	<2.0
trans-1,3-Dichloropropene	ug/L	140	-	<0.50
Ethylbenzene	ug/L	160	2	<0.50
1,1,2,2-Tetrachloroethane	ug/L	1400	17	<0.50
Tetrachloroethylene	ug/L	1000	4.4	<0.50
Toluene	ug/L	16	2	<0.50
Trichloroethylene	ug/L	400	7.6	<0.50
o-Xylene	ug/L	-	-	<0.50
m+p-Xylenes	ug/L	-	-	<1.0
Xylenes (Total)	ug/L	1400	4.4	<1.1
Surrogate: 4-Bromofluorobenzene	%	-	-	90.2
Surrogate: 1,4-Difluorobenzene	%	-	-	101.4

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

L2657859 CONT'D Job Reference: 21-199 PAGE 11 of 17 09-NOV-21 14:54 (MT)

Polycyclic Aromatic Hydrocarbons - WATER

		Sampl		L2657859-1 01-NOV-21 SW-UF-BH117
Analyte	Unit	Guide #1	Limits #2	
Acenaphthene	ug/L	-	-	<0.010
Anthracene	ug/L	-	-	0.012
Benzo(a)anthracene	ug/L	-	-	<0.010
Benzo(a)pyrene	ug/L	-	-	<0.010
Benzo(b&j)fluoranthene	ug/L	-	-	<0.010
Benzo(e)pyrene	ug/L	-	-	<0.050
Benzo(ghi)perylene	ug/L	-	-	<0.010
Benzo(k)fluoranthene	ug/L	-	-	<0.010
Chrysene	ug/L	-	-	<0.010
Dibenz(a,h)acridine	ug/L	-	-	<0.050
Dibenz(a,j)acridine	ug/L	-	-	<0.050
Dibenz(a,h)anthracene	ug/L	-	-	<0.010
Dibenzo(a,i)pyrene	ug/L	-	-	<0.050
7H-Dibenzo(c,g)carbazole	ug/L	-	-	<0.050
1,3-Dinitropyrene	ug/L	-	-	<1.0
1,6-Dinitropyrene	ug/L	-	-	<1.0
1,8-Dinitropyrene	ug/L	-	-	<1.0
Fluoranthene	ug/L	-	-	<0.010
Fluorene	ug/L	-	-	<0.010
Indeno(1,2,3-cd)pyrene	ug/L	-	-	<0.010
Naphthalene	ug/L	-	-	<0.010
Perylene	ug/L	-	-	<0.010
Phenanthrene	ug/L	-	-	<0.010
Pyrene	ug/L	-	-	<0.010
Surrogate: 2-Fluorobiphenyl	%	-	-	76.1
Surrogate: D14-Terphenyl	%	-	-	93.9
Surrogate: d14-Terphenyl	%	-	-	103.4
Total PAHs	ug/L	5	2	<1.7

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2657859 CONT'D.... Job Reference: 21-199 PAGE 12 of 17 09-NOV-21 14:54 (MT)

Semi-Volatile Organics - WATER

		I	_ab ID	L2657859-1
		Sample	e Date	01-NOV-21
		Sam	ple ID	SW-UF-BH117
Analyte	Unit	Guide #1	Limits #2	
3,3-Dichlorobenzidine	ug/L	2	0.8	<0.40
Di-n-butylphthalate	ug/L	80	15	<1.0
Bis(2-ethylhexyl)phthalate	ug/L	12	8.8	<2.0
Pentachlorophenol	ug/L	5	2	<0.50
Surrogate: 2-Fluorobiphenyl	%	-	-	80.6
Surrogate: p-Terphenyl d14	%	-	-	91.4
Surrogate: 2,4,6-Tribromophenol	%	-	-	122.2

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2657859 CONT'D.... Job Reference: 21-199 PAGE 13 of 17 09-NOV-21 14:54 (MT)

Polychlorinated Biphenyls - WATER

			Lab ID	L2657859-1
		Sampl	e Date	01-NOV-21
		San	nple ID	SW-UF-BH117
		Guide	Limits	
Analyte	Unit	#1	#2	
Aroclor 1242	ug/L	-	-	<0.020
Aroclor 1248	ug/L	-	-	<0.020
Aroclor 1254	ug/L	-	-	<0.020
Aroclor 1260	ug/L	-	-	<0.020
Surrogate: Decachlorobiphenyl	%	-	-	105.9
Total PCBs	ug/L	1	0.4	<0.040
Surrogate: Tetrachloro-m-xylene	%	-	-	95.3

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law Guide Limit #2: Ontario Toronto Storm Sewer By-Law

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

L2657859 CONT'D.... Job Reference: 21-199 PAGE 14 of 17 09-NOV-21 14:54 (MT)

Organic Parameters - WATER

		Sample		
Analyte	Unit	Guide #1	Limits #2	i
Nonylphenol	ug/L	20	1	<1.0
Nonylphenol Diethoxylates	ug/L	-	-	<0.10
Total Nonylphenol Ethoxylates	ug/L	200	10	<2.0
Nonylphenol Monoethoxylates	ug/L	-	-	<2.0

Guide Limit #1: Ontario Toronto Sanitary Discharge Sewer By-Law

Guide Limit #2: Ontario Toronto Storm Sewer By-Law

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.

Analytical result for this parameter exceeds Guide Limits listed. See Summary of Guideline Exceedances.

Reference Information

Qualifiers for Individual Parameters Listed:

LDS Detection	n Limit Raisad. D	Dilution required due to high Dissolved Soli	ids / Electrical Conductivity
		D was increased to account for the largest	
		D was increased to account for the largest	
ethods Listed (if appl ALS Test Code	Matrix	Test Description	Method Reference**
625-PAH-LOW-WT	Water	EPA 8270 PAH (Low Level)	SW846 8270
	e extracted and ex	tracts are analyzed on GC/MSD. Dependi	ng on the analytical GC/MS column used benzo(j)fluoranthene may chromatographically co-elute with
625-SAN-WT	Water	Ontario Sanitary Sewer SVOC Target List	SW-846 8270
Samples are extracte	d with solvent and	then analyzed by GC/MS.	
BOD-WT	Water	BOD	APHA 5210 B
and incubating a sam	ple for a specified	time period, and measuring the oxygen d	- "Biochemical Oxygen Demand (BOD)". All forms of biochemical oxygen demand (BOD) are determined by diluting lepletion using a dissolved oxygen meter. Dissolved BOD (SOLUBLE) is determined by filtering the sample through a dding a nitrification inhibitor to the diluted sample prior to incubation.
CN-TOT-WT	Water	Cyanide, Total	ISO 14403-2
combination of harbit	uric acid and ison	icotinic acid to form a highly colored comp	Cyanide is converted to cyanogen chloride by reacting with chloramine-T, the cyanogen chloride then reacts with a
When using this metl	nod, high levels of	icotinic acid to form a highly colored comp thiocyanate in samples can cause false p late to check for this potential interference	lex.
When using this metl	nod, high levels of	thiocyanate in samples can cause false p	lex.
When using this mether ALS recommends an CR-CR6-IC-WT This analysis is carrie	nod, high levels of alysis for thiocyar Water ed out using proce es analysis for chi	thiocyanate in samples can cause false p hate to check for this potential interference Chromium +6 edures adapted from "Test Methods for Eva romium (VI) by ion chromatography using	lex. positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, EPA 7199
When using this mether ALS recommends an CR-CR6-IC-WT This analysis is carrier The procedure involv chromium and the ch	nod, high levels of alysis for thiocyar Water ed out using proce es analysis for ch romium (VI) resul	thiocyanate in samples can cause false p hate to check for this potential interference Chromium +6 edures adapted from "Test Methods for Eva romium (VI) by ion chromatography using ts.	Jex. Provide a state of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, EPA 7199 aluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA)
When using this mether ALS recommends an CR-CR6-IC-WT This analysis is carrier The procedure involv chromium and the ch	nod, high levels of alysis for thiocyar Water ed out using proce es analysis for ch romium (VI) resul	thiocyanate in samples can cause false p hate to check for this potential interference Chromium +6 edures adapted from "Test Methods for Eva romium (VI) by ion chromatography using ts.	 lex. positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, EPA 7199 aluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total
When using this meth ALS recommends an CR-CR6-IC-WT This analysis is carrie The procedure involv chromium and the ch Analysis conducted in EC-SCREEN-WT	nod, high levels of alysis for thiocyar Water ed out using proce es analysis for chi romium (VI) resul n accordance with Water	thiocyanate in samples can cause false p hate to check for this potential interference Chromium +6 romium (VI) by ion chromatography using ts. the Protocol for Analytical Methods Used Conductivity Screen (Internal Use	Jex. Jex
When using this meth ALS recommends an CR-CR6-IC-WT This analysis is carrie The procedure involv chromium and the ch Analysis conducted in EC-SCREEN-WT	nod, high levels of alysis for thiocyar Water ed out using proce es analysis for chi romium (VI) resul n accordance with Water	thiocyanate in samples can cause false p hate to check for this potential interference Chromium +6 dures adapted from "Test Methods for Eva romium (VI) by ion chromatography using ts. the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only)	Jex. Jex
When using this meth ALS recommends an CR-CR6-IC-WT This analysis is carrie The procedure involv chromium and the ch Analysis conducted in EC-SCREEN-WT Qualitative analysis of EC-WW-MF-WT	nod, high levels of alysis for thiocyar Water ed out using proce es analysis for chi romium (VI) result n accordance with Water f conductivity whe Water	thiocyanate in samples can cause false p hate to check for this potential interference Chromium +6 dures adapted from "Test Methods for Eva romium (VI) by ion chromatography using ts. the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes E. Coli	 lex. positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, EPA 7199 aluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). APHA 2510 sts - e.g. TDS, metals, etc.
When using this meth ALS recommends an CR-CR6-IC-WT This analysis is carrie The procedure involv chromium and the ch Analysis conducted in EC-SCREEN-WT Qualitative analysis of EC-WW-MF-WT	nod, high levels of alysis for thiocyar Water ed out using proce es analysis for chi romium (VI) result n accordance with Water f conductivity whe Water	thiocyanate in samples can cause false p hate to check for this potential interference Chromium +6 dures adapted from "Test Methods for Eva romium (VI) by ion chromatography using ts. the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes E. Coli	 lex. positives at ~1-2% of the thiocyanate concentration. For samples with detectable cyanide analyzed by this method, EPA 7199 aluating Solid Waste" SW-846, Method 7199, published by the United States Environmental Protection Agency (EPA diphenylcarbazide in a sulphuric acid solution. Chromium (III) is calculated as the difference between the total in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). APHA 2510 sts - e.g. TDS, metals, etc. SM 9222D
When using this meth ALS recommends an CR-CR6-IC-WT This analysis is carrie The procedure involv chromium and the ch Analysis conducted in EC-SCREEN-WT Qualitative analysis of EC-WW-MF-WT A 100 mL volume of a F-IC-N-WT	nod, high levels of alysis for thiocyar Water ed out using proce es analysis for chi romium (VI) result n accordance with Water f conductivity whe Water sample is filtered for Water	thiocyanate in samples can cause false p hate to check for this potential interference Chromium +6 dures adapted from "Test Methods for Eva romium (VI) by ion chromatography using ts. the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes E. Coli through a membrane, the membrane is pla	Jex. Sector 2019 Sector 201
When using this meth ALS recommends an CR-CR6-IC-WT This analysis is carrie The procedure involv chromium and the ch Analysis conducted in EC-SCREEN-WT Qualitative analysis of EC-WW-MF-WT A 100 mL volume of a F-IC-N-WT	nod, high levels of alysis for thiocyar Water ed out using proce es analysis for chi romium (VI) result n accordance with Water f conductivity whe Water sample is filtered for Water	thiocyanate in samples can cause false p hate to check for this potential interference Chromium +6 dures adapted from "Test Methods for Eva romium (VI) by ion chromatography using ts. the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes E. Coli through a membrane, the membrane is place Fluoride in Water by IC	Jex. Sector 2019 Sector 201
When using this meth ALS recommends an CR-CR6-IC-WT This analysis is carrie The procedure involv chromium and the ch Analysis conducted in EC-SCREEN-WT Qualitative analysis of EC-WW-MF-WT A 100 mL volume of s F-IC-N-WT Inorganic anions are HG-T-CVAA-WT	nod, high levels of alysis for thiocyar Water ed out using proce es analysis for chi romium (VI) result n accordance with Water f conductivity whe Water sample is filtered to Water analyzed by Ion C Water	 thiocyanate in samples can cause false plate to check for this potential interference Chromium +6 dures adapted from "Test Methods for Eva romium (VI) by ion chromatography using ts. the Protocol for Analytical Methods Used Conductivity Screen (Internal Use Only) ere required during preparation of other tes E. Coli through a membrane, the membrane is plat Fluoride in Water by IC chromatography with conductivity and/or U Total Mercury in Water by CVAAS 	 dex. <lidex.< li=""> dex. dex. dex. dex.</lidex.<>

Reference Information

ethods Listed (if applica	able):		09-NOV-21 14:54 (MT)
LS Test Code	Matrix	Test Description	Method Reference**
Water samples are dige	ested with nitric	c and hydrochloric acids, and analyzed by C	CRC ICPMS.
Method Limitation (re: S	Sulfur): Sulfide	and volatile sulfur species may not be recov	vered by this method.
Analysis conducted in a	ccordance with	h the Protocol for Analytical Methods Used i	in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011).
NP,NPE-LCMS-WT	Water	Nonylphenols and Ethoxylates by LC/MS-MS	J. Chrom A849 (1999) p.467-482
Water samples are filte	ered and analyz	zed on LCMS/MS by direct injection.	
OGG-SPEC-CALC-WT	Water	Speciated Oil and Grease A/V Calc	CALCULATION
Sample is extracted with	h hexane, sam	ple speciation into mineral and animal/vege	etable fractions is achieved via silica gel separation and is then determined gravimetrically.
OGG-SPEC-WT	Water	Speciated Oil and Grease-Gravimetric	2 APHA 5520 B
The procedure involves determined gravimetrica		of the entire water sample with hexane. Sam	mple speciation into mineral and animal/vegetable fractions is achieved via silica gel separation and is then
P-T-COL-WT	Water	Total P in Water by Colour	APHA 4500-P PHOSPHORUS
This analysis is carried of	out using proce	edures adapted from APHA Method 4500-P	P "Phosphorus". Total Phosphorus is deteremined colourimetrically after persulphate digestion of the sample.
PAH-EXTRA-WT	Water	Sanitary Sewer Use By-Law Additiona PAH	N SW 846 8270
PAH-SUM-CALC-WT	Water	TOTAL PAH's	CALCULATION
Total PAH represents th to be included.	ne sum of all P	AH analytes reported for a given sample. N	Note that regulatory agencies and criteria differ in their definitions of Total PAH in terms of the individual PAH analy
PCB-WT	Water	Polychlorinated Biphenyls	EPA 8082
PCBs are extracted from	n an aqueous	sample at neutral pH with aliquots of dichlor	romethane using a modified separatory funnel technique. The extracts are analyzed by GC/MSD.
PH-WT	Water	рH	APHA 4500 H-Electrode
Water samples are anal	lyzed directly b	by a calibrated pH meter.	
Analysis conducted in a samples under this regu			in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (July 1, 2011). Holdtime for
PHENOLS-4AAP-WT	Water	Phenol (4AAP)	EPA 9066
An automated method is colorimetrically.	s used to distil	I the sample. The distillate is then buffered	to pH 9.4 which reacts with 4AAP and potassium ferricyanide to form a red complex which is measured
SOLIDS-TSS-WT	Water	Suspended solids	APHA 2540 D-Gravimetric
A well-mixed sample is f	filtered through	h a weighed standard glass fibre filter and th	he residue retained is dried in an oven at 104–1°C for a minimum of four hours or until a constant weight is achieve
TKN-F-WT	Water	TKN in Water by Fluorescence	J. ENVIRON. MONIT., 2005,7,37-42,RSC

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference**
Total Kjeldahl Nitroge	en is determined u	ising block digestion followed by Flow-in	njection analysis with fluorescence detection
VOC-ROU-HS-WT	Water	Volatile Organic Compounds	SW846 8260
Aqueous samples ar	e analyzed by hea	dspace-GC/MS.	
XYLENES-SUM-CAL	.C-WT Water	Sum of Xylene Isomer Concentration	ons CALCULATION
		xylene and m&p-xylene.	da ta improva porformanaa
ALS lest methods may	•	cations from specified reference method	ds to improve performance.
Chain of Custody Numb			
Chain of Custody Numb		e(s) indicate the laboratory that performe	ed analytical analysis for that test. Refer to the list below:
	he above test code	e(s) indicate the laboratory that performe bry Location	ed analytical analysis for that test. Refer to the list below:

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample

mg/kg wwt - milligrams per kilogram based on wet weight of sample

mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight

mg/L - unit of concentration based on volume, parts per million.

< - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory. UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION. Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information. Guideline limits are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Surrogate: 2-Fluorobiphenyl

Quality Control Report

		Workorder	L265785	59	Report Date: 0	9-NOV-21		Page 1 of 11
	Grounded Engineering Ind 1 BANIGAN DRIVE TORONTO ON M4H 1G							
	Shelby Plant							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-PAH-LOW-W	Г Water							
	5637613							
WG3653308-2 Acenaphthene	LCS		82.3		%		50-130	08-NOV-21
Anthracene			89.0		%		60-130	08-NOV-21
Benzo(a)anthra	acene		100.8		%		60-140	08-NOV-21
Benzo(a)pyren	e		79.6		%		60-130	08-NOV-21
Benzo(b&j)fluc	ranthene		89.7		%		60-130	08-NOV-21
Benzo(ghi)per	/lene		90.3		%		50-140	08-NOV-21
Benzo(k)fluora	nthene		88.0		%		60-130	08-NOV-21
Chrysene			99.2		%		60-140	08-NOV-21
Dibenz(a,h)ant	hracene		93.6		%		60-130	08-NOV-21
Fluoranthene			93.4		%		60-130	08-NOV-21
Fluorene			88.3		%		60-130	08-NOV-21
Indeno(1,2,3-c	d)pyrene		92.3		%		60-140	08-NOV-21
Naphthalene			77.3		%		50-130	08-NOV-21
Perylene			86.6		%		60-130	08-NOV-21
Phenanthrene			92.2		%		60-130	08-NOV-21
Pyrene			93.3		%		60-130	08-NOV-21
WG3653308-1 Acenaphthene	МВ		<0.010		ug/L		0.01	08-NOV-21
Anthracene			<0.010		ug/L		0.01	08-NOV-21
Benzo(a)anthr	acana		<0.010		ug/L		0.01	08-NOV-21
Benzo(a)pyren			<0.010		ug/L		0.01	08-NOV-21
Benzo(b&j)fluc			<0.010		ug/L		0.01	08-NOV-21
Benzo(ghi)per			<0.010		ug/L		0.01	08-NOV-21
Benzo(k)fluora			<0.010		ug/L		0.01	08-NOV-21
Chrysene			<0.010		ug/L		0.01	08-NOV-21
Dibenz(a,h)ant	hracene		<0.010		ug/L		0.01	08-NOV-21
Fluoranthene			<0.010		ug/L		0.01	08-NOV-21
Fluorene			<0.010		ug/L		0.01	08-NOV-21
Indeno(1,2,3-c	d)pyrene		<0.010		ug/L		0.01	08-NOV-21
Naphthalene			<0.010		ug/L		0.01	08-NOV-21
Perylene			<0.010		ug/L		0.01	08-NOV-21
Phenanthrene			<0.010		ug/L		0.01	08-NOV-21
Pyrene			<0.010		ug/L		0.01	08-NOV-21
,					- . . –			00 110 V 21

70.8

%

40-130

08-NOV-21

			Quant	,	ontopoli			
		Workorder:	L2657859	Э	Report Date: 09	9-NOV-21		Page 2 of 11
1 T	Frounded Engineering Inc BANIGAN DRIVE ORONTO ON M4H 1G3	3						
Contact: S	helby Plant							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
625-PAH-LOW-WT	Water							
Batch R5	637613							
WG3653308-1	MB		00.0		0/		40,420	
Surrogate: D14-	reipnenyi		90.6		%		40-130	08-NOV-21
625-SAN-WT	Water							
Batch R5	638159							
WG3653308-2	LCS							
3,3-Dichloroben			20.7	RRQC	%		50-140	09-NOV-21
Bis(2-ethylhexyl			126.8		%		50-140	09-NOV-21
Di-n-butylphthal			101.6		%		50-140	09-NOV-21
Pentachlorophe			144.0	LCS-H	%		50-140	09-NOV-21
WG3653308-1	S: RRQC: Recovery is bel MB	low ALS control lir		ed non-detect		d samples hav		ected.
3,3-Dichloroben	zidine		<0.40		ug/L		0.4	09-NOV-21
Bis(2-ethylhexyl)phthalate		<2.0		ug/L		2	09-NOV-21
Di-n-butylphthal	ate		<1.0		ug/L		1	09-NOV-21
Pentachlorophe	nol		<0.50		ug/L		0.5	09-NOV-21
Surrogate: 2-Flu	Jorobiphenyl		74.9		%		40-130	09-NOV-21
Surrogate: 2,4,6	6-Tribromophenol		97.4		%		40-130	09-NOV-21
Surrogate: p-Te	rphenyl d14		108.1		%		40-130	09-NOV-21
BOD-WT	Water							
Batch R5	637855							
WG3650878-10	DUP	L2657584-7	2.0			N 1/A		
BOD		<3.0	<3.0	RPD-NA	mg/L	N/A	30	02-NOV-21
WG3650878-11 BOD	LCS		104.5		%		85-115	02-NOV-21
WG3650878-9	MB		104.0		70		00-110	02-110 0-21
BOD	WD		<2.0		mg/L		2	02-NOV-21
CN-TOT-WT	Water							
Batch R5	635096							
WG3651039-25 Cyanide, Total	DUP	WG3651039-2 <0.0020	7 <0.0020	RPD-NA	mg/L	N/A	20	02-NOV-21
WG3651039-24 Cyanide, Total	LCS		96.2		%		80-120	02-NOV-21
WG3651039-23 Cyanide, Total	МВ		<0.0020		mg/L		0.002	02-NOV-21
WG3651039-26	MS	WG3651039-27			5			
Cyanide, Total	mo	1100001000-21	93.1		%		70-130	02-NOV-21

			Workorder: I	_2657859	Rep	oort Date: 09-NC	DV-21	I	Page 3 of 11
	1 BANIGA	Engineering Inc N DRIVE D ON M4H 1G3							
Contact:	Shelby Pla	ant							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
CR-CR6-IC-WT		Water							
	5634838								
WG3650763-4 Chromium, He			WG3650763-3 <0.00050	<0.00050	RPD-NA	mg/L	N/A	20	02-NOV-21
WG3650763-2 Chromium, He				103.8		%		80-120	02-NOV-21
WG3650763-1 Chromium, He	MB exavalent			<0.00050		mg/L		0.0005	02-NOV-21
WG3650763-5 Chromium, He	MS exavalent		WG3650763-3	104.7		%		70-130	02-NOV-21
EC-WW-MF-WT		Water							
Batch R	5635086								
WG3650432-3 E. Coli	DUP		L2657859-1 0	0		CFU/100mL	0.0	65	02-NOV-21
WG3650432-4 E. Coli	DUP		L2657835-1 0	<10	RPD-NA	CFU/100mL	N/A	65	02-NOV-21
WG3650432-1 E. Coli	MB			0		CFU/100mL		1	02-NOV-21
F-IC-N-WT		Water							
	5635989								
WG3651635-14 Fluoride (F)	4 DUP		WG3651635-13 0.065	0.065		mg/L	0.0	20	03-NOV-21
WG3651635-12 Fluoride (F)	2 LCS			100.3		%		90-110	03-NOV-21
WG3651635-11 Fluoride (F)	I MB			<0.020		mg/L		0.02	03-NOV-21
WG3651635-15 Fluoride (F)	5 MS		WG3651635-13	103.9		%		75-125	03-NOV-21
HG-T-CVAA-WT		Water							
	5635114								
WG3650565-4 Mercury (Hg)-			WG3650565-3 <0.0000050	<0.0000050	RPD-NA	mg/L	N/A	20	03-NOV-21
WG3650565-2 Mercury (Hg)-				101.0		%		80-120	03-NOV-21
WG3650565-1 Mercury (Hg)-	MB Total			<0.0000050	2	mg/L		0.000005	03-NOV-21
WG3650565-6 Mercury (Hg)-			WG3650565-5	102.0		%		70-130	03-NOV-21
MET-T-CCMS-WT		Water							

Workorder: L2657859 Report Date: 09-NOV-21 Page 4 of 11 Grounded Engineering Inc Client: **1 BANIGAN DRIVE** TORONTO ON M4H 1G3 Contact: Shelby Plant Test Matrix Reference Result Qualifier Units RPD Limit Analyzed MET-T-CCMS-WT Water R5634397 Batch WG3650202-4 DUP WG3650202-3 Aluminum (Al)-Total 0.0075 0.0089 mg/L 17 20 02-NOV-21 Antimony (Sb)-Total 0.00014 0.00014 mg/L 0.1 20 02-NOV-21 0.00013 0.00015 Arsenic (As)-Total mg/L 16 20 02-NOV-21 < 0.0000050 Cadmium (Cd)-Total < 0.0000050 **RPD-NA** mg/L N/A 20 02-NOV-21 Chromium (Cr)-Total 0.00051 < 0.00050 mg/L N/A **RPD-NA** 20 02-NOV-21 Cobalt (Co)-Total < 0.00010 < 0.00010 **RPD-NA** mg/L N/A 20 02-NOV-21 Copper (Cu)-Total 0.00688 0.00706 mg/L 2.6 20 02-NOV-21 Lead (Pb)-Total 0.000680 0.000677 mg/L 0.4 20 02-NOV-21 Manganese (Mn)-Total < 0.00050 < 0.00050 RPD-NA mg/L N/A 20 02-NOV-21 Molybdenum (Mo)-Total 0.000383 0.000362 mg/L 5.6 20 02-NOV-21 <0.00050 Nickel (Ni)-Total < 0.00050 **RPD-NA** mg/L N/A 20 02-NOV-21 Selenium (Se)-Total 0.000262 0.000272 mg/L 3.9 20 02-NOV-21 Silver (Ag)-Total < 0.000050 < 0.000050 mg/L N/A 20 **RPD-NA** 02-NOV-21 Tin (Sn)-Total 0.00052 0.00033 mg/L 0.00019 J 0.0002 02-NOV-21 Titanium (Ti)-Total < 0.00030 < 0.00030 RPD-NA mg/L N/A 20 02-NOV-21 Zinc (Zn)-Total 0.0127 0.0131 mg/L 3.1 20 02-NOV-21 WG3650202-2 LCS Aluminum (Al)-Total % 103.3 80-120 02-NOV-21 Antimony (Sb)-Total % 101.3 80-120 02-NOV-21 Arsenic (As)-Total 102.6 % 80-120 02-NOV-21 Cadmium (Cd)-Total 103.7 % 80-120 02-NOV-21 Chromium (Cr)-Total 101.7 % 02-NOV-21 80-120 Cobalt (Co)-Total 101.0 % 80-120 02-NOV-21 Copper (Cu)-Total % 102.0 80-120 02-NOV-21 Lead (Pb)-Total 100.7 % 80-120 02-NOV-21 Manganese (Mn)-Total 100.9 % 80-120 02-NOV-21 Molybdenum (Mo)-Total 101.3 % 02-NOV-21 80-120 Nickel (Ni)-Total 101.3 % 80-120 02-NOV-21 Selenium (Se)-Total 102.6 % 80-120 02-NOV-21 Silver (Ag)-Total 102.3 % 80-120 02-NOV-21 Tin (Sn)-Total 102.4 % 80-120 02-NOV-21 Titanium (Ti)-Total 99.4 % 80-120 02-NOV-21 Zinc (Zn)-Total 99.0 % 80-120 02-NOV-21

Quality Control Report

Quality Control Roport									
			Workorder:	L2657859)	Report Date: 09-	NOV-21		Page 5 of 11
Client:	1 BANIGA	Engineering Inc N DRIVE D ON M4H 1G3							
Contact:	Shelby Pla	int							
Test		Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
MET-T-CCMS	S-WT	Water							
Batch	R5634397								
WG365020 Aluminum				<0.0050		mg/L		0.005	02-NOV-21
Antimony				<0.00010		mg/L		0.0001	02-NOV-21
Arsenic (A				<0.00010		mg/L		0.0001	02-NOV-21
	(Cd)-Total			<0.000005	SC.	mg/L		0.000005	02-NOV-21
	(Cr)-Total			<0.00050		mg/L		0.0005	02-NOV-21
Cobalt (Co	. ,			<0.00030		mg/L		0.0001	02-NOV-21 02-NOV-21
Copper (C	,			<0.00050		mg/L		0.0005	
Lead (Pb)				<0.000050	,	mg/L		0.00005	02-NOV-21
	se (Mn)-Total			<0.00050	,	mg/L		0.0005	02-NOV-21 02-NOV-21
-	um (Mo)-Total			<0.000050	,	mg/L		0.00005	02-NOV-21
Nickel (Ni)				<0.00050	,	mg/L		0.0005	
	(Se)-Total			<0.000050	,	mg/L		0.00005	02-NOV-21
Silver (Ag)	. ,			<0.000050		mg/L		0.00005	02-NOV-21
Tin (Sn)-T				<0.00010	,	mg/L		0.0001	02-NOV-21
Titanium (<0.00030		-		0.0003	02-NOV-21
Zinc (Zn)-				< 0.00030		mg/L		0.0003	02-NOV-21
			W00050000 0	<0.0030		mg/L		0.003	02-NOV-21
WG365020 Aluminum			WG3650202-6	N/A	MS-B	%		-	02-NOV-21
Antimony	(Sb)-Total			103.2		%		70-130	02-NOV-21
Arsenic (A	As)-Total			104.5		%		70-130	02-NOV-21
Cadmium	(Cd)-Total			103.9		%		70-130	02-NOV-21
Chromium	n (Cr)-Total			105.9		%		70-130	02-NOV-21
Cobalt (Co	o)-Total			98.6		%		70-130	02-NOV-21
Copper (C	Cu)-Total			94.2		%		70-130	02-NOV-21
Lead (Pb)	-Total			95.0		%		70-130	02-NOV-21
Manganes	se (Mn)-Total			N/A	MS-B	%		-	02-NOV-21
Molybden	um (Mo)-Total			105.9		%		70-130	02-NOV-21
Nickel (Ni))-Total			95.7		%		70-130	02-NOV-21
Selenium	(Se)-Total			104.5		%		70-130	02-NOV-21
Silver (Ag)				98.2		%		70-130	02-NOV-21
Tin (Sn)-T				102.4		%		70-130	02-NOV-21
Titanium (N/A	MS-B	%		-	02-NOV-21
Zinc (Zn)-				83.9		%		70-130	02-NOV-21
NP,NPE-LCM		Water							
, ,									

		Workorder:	L2657859	R	eport Date: 09-N	IOV-21		Page 6 of 11
Client:	Grounded Engineering Inc 1 BANIGAN DRIVE TORONTO ON M4H 1G3							
Contact:	Shelby Plant							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
NP,NPE-LCMS-	-WT Water							
Batch	R5636834							
WG3652338 Nonylpheno		L2657843-1 <1.0	<1.0	RPD-NA	ug/L	N/A	30	05-NOV-21
Nonylpheno	I Monoethoxylates	<2.0	<2.0	RPD-NA	ug/L	N/A	30	05-NOV-21
Nonylpheno	l Diethoxylates	<0.10	<0.10	RPD-NA	ug/L	N/A	30	05-NOV-21
WG3652338 Nonylpheno			95.4		%		75-125	05-NOV-21
	l Monoethoxylates		98.2		%		75-125	05-NOV-21
	l Diethoxylates		97.1		%		75-125	05-NOV-21
WG3652338			4.0					
Nonylpheno			<1.0		ug/L		1	05-NOV-21
	l Monoethoxylates l Diethoxylates		<2.0 <0.10		ug/L		2 0.1	05-NOV-21
	·	1 0057040 4	<0.10		ug/L		0.1	05-NOV-21
WG3652338 Nonylpheno		L2657843-1	101.3		%		60-140	05-NOV-21
Nonylpheno	l Monoethoxylates		132.3		%		60-140	05-NOV-21
Nonylpheno	l Diethoxylates		97.1		%		60-140	05-NOV-21
OGG-SPEC-WT	Water							
Batch	R5634283							
WG3650184 Oil and Grea			81.3		%		70-130	02-NOV-21
Mineral Oil a			77.8		%		70-130	02-NOV-21
WG3650184							10 100	02100121
Oil and Grea			<5.0		mg/L		5	02-NOV-21
Mineral Oil a	and Grease		<2.5		mg/L		2.5	02-NOV-21
P-T-COL-WT	Water							
Batch WG3650630	R5635098 -3 DUP	L2657585-1						
Phosphorus		2.63	2.62		mg/L	0.3	20	03-NOV-21
WG3650630 Phosphorus			99.8		%		80-120	03-NOV-21
WG3650630 Phosphorus			<0.0030		mg/L		0.003	03-NOV-21
WG3650630 Phosphorus	-	L2657585-1	N/A	MS-B	%		-	03-NOV-21

PAH-EXTRA-WT

Water

Quality Control Report

		Workorder:	L265785	9	Report Date: (9-NOV-21		Page 7 of 11
Client:	Grounded Engineering Inc 1 BANIGAN DRIVE TORONTO ON M4H 1G3							
Contact:	Shelby Plant							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PAH-EXTRA-W	T Water							
Batch	R5637631							
WG3653308- Benzo(e)pyr			85.0		%		60 120	08 NOV 24
1,3-Dinitropy			134.6	LCS-H	%		60-130 60-130	08-NOV-21 08-NOV-21
1,6-Dinitropy			91.9	200-11	%		60-130 60-130	08-NOV-21
Dibenz(a,h)a			85.5		%		60-130 60-130	08-NOV-21
1,8-Dinitropy			103.5		%		60-130 60-130	08-NOV-21
Dibenz(a,j)a			91.3		%		60-130	08-NOV-21
	(c,g)carbazole		95.2		%		60-130	08-NOV-21
Dibenzo(a,i)			95.6		%		60-130	08-NOV-21
WG3653308-	-1 MB							
Benzo(e)pyr			<0.050		ug/L		0.05	08-NOV-21
1,3-Dinitropy	/rene		<1.0		ug/L		1	08-NOV-21
1,6-Dinitropy			<1.0		ug/L		1	08-NOV-21
Dibenz(a,h)a	acridine		<0.050		ug/L		0.05	08-NOV-21
1,8-Dinitropy	/rene		<1.0		ug/L		1	08-NOV-21
Dibenz(a,j)a	cridine		<0.050		ug/L		0.05	08-NOV-21
7H-Dibenzo	(c,g)carbazole		<0.050		ug/L		0.05	08-NOV-21
Dibenzo(a,i)	pyrene		<0.050		ug/L		0.05	08-NOV-21
Surrogate: d	14-Terphenyl		98.4		%		40-130	08-NOV-21
PCB-WT	Water							
Batch	R5635451							
WG3650278- Aroclor 1242			120.4		%		65-130	03-NOV-21
Aroclor 1248			108.8		%		65-130	03-NOV-21
Aroclor 1254			109.8		%		65-130	03-NOV-21
Aroclor 1260			116.1		%		65-130	03-NOV-21
WG3650278-	-1 MB							
Aroclor 1242			<0.020		ug/L		0.02	03-NOV-21
Aroclor 1248	3		<0.020		ug/L		0.02	03-NOV-21
Aroclor 1254	1		<0.020		ug/L		0.02	03-NOV-21
Aroclor 1260)		<0.020		ug/L		0.02	03-NOV-21
Surrogate: D	Decachlorobiphenyl		125.5		%		50-150	03-NOV-21
Surrogate: T	etrachloro-m-xylene		88.5		%		50-150	03-NOV-21
PH-WT	Water							

				-	Persont Deter CO			
		Workorder:	L265785	9	Report Date: 09-	NOV-21		Page 8 of 11
1 B	ounded Engineering Inc ANIGAN DRIVE RONTO ON M4H 1G3							
	elby Plant							
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
PH-WT	Water							
Batch R56	35915							
WG3651418-4 рН	DUP	WG3651418-3 7.45	7.49	J	pH units	0.04	0.2	03-NOV-21
WG3651418-2	LCS			·		0.01	0.12	00110121
рН			7.01		pH units		6.9-7.1	03-NOV-21
PHENOLS-4AAP-WT	Water							
	35191							
WG3650627-3 Phenols (4AAP)	DUP	L2657870-1 0.0256	0.0257		mg/L	0.5	20	02-NOV-21
WG3650627-2		0.0230	0.0257		ilig/L	0.5	20	02-INOV-21
Phenols (4AAP)			100.3		%		85-115	02-NOV-21
WG3650627-1 Phenols (4AAP)	MB		<0.0010		mg/L		0.001	02-NOV-21
WG3650627-4 Phenols (4AAP)	MS	L2657870-1	N/A	MS-B	%		-	02-NOV-21
SOLIDS-TSS-WT	Water							
Batch R56	37265							
WG3652280-6 Total Suspended	DUP Solids	WG3652280-7 10700	10900		mg/L	1.7	20	05-NOV-21
WG3652280-5 Total Suspended	L CS Solids		99.3		%		85-115	05-NOV-21
WG3652280-4 Total Suspended	MB Solids		<3.0		mg/L		3	05-NOV-21
TKN-F-WT	Water							
Batch R56	35493							
WG3651030-3 Total Kjeldahl Niti	DUP rogen	WG3651030-5 0.130	0.170	J	mg/L	0.040	0.1	03-NOV-21
WG3651030-2 Total Kjeldahl Niti	LCS rogen		120.8		%		75-125	03-NOV-21
WG3651030-1 Total Kjeldahl Niti	MB rogen		<0.050		mg/L		0.05	03-NOV-21
WG3651030-4 Total Kjeldahl Niti	MS rogen	WG3651030-5	110.4		%		70-130	03-NOV-21
VOC-ROU-HS-WT	Water							
Batch R56	35590							
WG3650933-4 1,1,2,2-Tetrachlo	DUP roethane	WG3650933-3 <0.50	<0.50	RPD-NA	ug/L	N/A	30	03-NOV-21
1,2-Dichlorobenzo		<0.50	<0.50	RPD-NA	ug/L	N/A	30 30	03-NOV-21
			-		5			50 El

cis-1,2-Dichloroethylene

Quality Control Report

Workorder: L2657859 Report Date: 09-NOV-21 Page 9 of 11 Grounded Engineering Inc Client: **1 BANIGAN DRIVE** TORONTO ON M4H 1G3 Contact: Shelby Plant Test Matrix Reference Result Qualifier Units RPD Limit Analyzed VOC-ROU-HS-WT Water R5635590 Batch WG3650933-4 DUP WG3650933-3 1,4-Dichlorobenzene < 0.50 ug/L < 0.50 **RPD-NA** N/A 30 03-NOV-21 Benzene <0.50 <0.50 **RPD-NA** ug/L N/A 30 03-NOV-21 <1.0 Chloroform <1.0 RPD-NA ug/L N/A 30 03-NOV-21 cis-1,2-Dichloroethylene <0.50 < 0.50 **RPD-NA** ug/L N/A 30 03-NOV-21 Dichloromethane <2.0 <2.0 **RPD-NA** ug/L N/A 30 03-NOV-21 Ethylbenzene <0.50 <0.50 **RPD-NA** ug/L N/A 30 03-NOV-21 m+p-Xylenes < 0.40 < 0.40 **RPD-NA** ug/L N/A 30 03-NOV-21 ug/L o-Xylene < 0.30 < 0.30 **RPD-NA** N/A 30 03-NOV-21 Tetrachloroethylene <0.50 <0.50 **RPD-NA** ug/L N/A 30 03-NOV-21 Toluene < 0.40 < 0.40 **RPD-NA** ug/L N/A 30 03-NOV-21 trans-1,3-Dichloropropene <0.30 <0.30 **RPD-NA** ug/L N/A 30 03-NOV-21 Trichloroethylene <0.50 < 0.50 **RPD-NA** ug/L N/A 30 03-NOV-21 WG3650933-1 LCS 1,1,2,2-Tetrachloroethane 86.7 % 70-130 03-NOV-21 1,2-Dichlorobenzene 107.6 % 70-130 03-NOV-21 1,4-Dichlorobenzene 116.9 % 70-130 03-NOV-21 Benzene 112.6 % 70-130 03-NOV-21 Chloroform % 111.6 70-130 03-NOV-21 cis-1,2-Dichloroethylene 103.9 % 70-130 03-NOV-21 Dichloromethane 122.8 % 70-130 03-NOV-21 Ethylbenzene 93.2 % 70-130 03-NOV-21 m+p-Xylenes 104.5 % 70-130 03-NOV-21 90.5 % o-Xylene 70-130 03-NOV-21 Tetrachloroethylene 103.2 % 70-130 03-NOV-21 Toluene 95.5 % 70-130 03-NOV-21 trans-1,3-Dichloropropene 72.9 % 70-130 03-NOV-21 Trichloroethylene 106.3 % 70-130 03-NOV-21 WG3650933-2 MB 1,1,2,2-Tetrachloroethane <0.50 ug/L 0.5 03-NOV-21 1,2-Dichlorobenzene < 0.50 ug/L 0.5 03-NOV-21 1,4-Dichlorobenzene <0.50 ug/L 0.5 03-NOV-21 Benzene < 0.50 ug/L 0.5 03-NOV-21 Chloroform 1 <1.0 ug/L 03-NOV-21

<0.50

0.5

Quality Control Report

		Workorder:	L2657859)	Report Date: 09-	NOV-21		Page 10 of 11
Client: Contact:	Grounded Engineering Inc 1 BANIGAN DRIVE TORONTO ON M4H 1G3 Shelby Plant							-
Test	Matrix	Reference	Result	Qualifier	Units	RPD	Limit	Analyzed
VOC-ROU-H	S-WT Water							
Batch	R5635590							
WG36509								
	ichloroethylene		<0.50		ug/L		0.5	03-NOV-21
Dichloror	nethane		<2.0		ug/L		2	03-NOV-21
Ethylbenz	zene		<0.50		ug/L		0.5	03-NOV-21
m+p-Xyle	enes		<0.40		ug/L		0.4	03-NOV-21
o-Xylene			<0.30		ug/L		0.3	03-NOV-21
Tetrachlo	roethylene		<0.50		ug/L		0.5	03-NOV-21
Toluene			<0.40		ug/L		0.4	03-NOV-21
trans-1,3	-Dichloropropene		<0.30		ug/L		0.3	03-NOV-21
Trichloro	ethylene		<0.50		ug/L		0.5	03-NOV-21
Surrogate	e: 1,4-Difluorobenzene		101.7		%		70-130	03-NOV-21
Surrogate	e: 4-Bromofluorobenzene		91.8		%		70-130	03-NOV-21
WG36509		WG3650933-3	79.6		0/		50 450	
	etrachloroethane				%		50-150	03-NOV-21
	orobenzene		103.7		%		50-150	03-NOV-21
	orobenzene		113.6		%		50-150	03-NOV-21
Benzene			107.3		%		50-150	03-NOV-21
Chlorofor			107.2		%		50-150	03-NOV-21
	ichloroethylene		97.3		%		50-150	03-NOV-21
Dichloror			115.7		%		50-150	03-NOV-21
Ethylben			87.1		%		50-150	03-NOV-21
m+p-Xyle	enes		99.7		%		50-150	03-NOV-21
o-Xylene			84.7		%		50-150	03-NOV-21
Tetrachlo	proethylene		98.7		%		50-150	03-NOV-21
Toluene			88.7		%		50-150	03-NOV-21
trans-1,3	-Dichloropropene		64.8		%		50-150	03-NOV-21
Trichloro	ethylene		102.9		%		50-150	03-NOV-21

Quality Control Report

Workorder: L2657859

Report Date: 09-NOV-21

Client:	Grounded Engineering Inc						
	1 BANIGAN DRIVE						
	TORONTO ON M4H 1G3						
Contact:	Shelby Plant						

/0/11/201.

Legend:

Limit	ALS Control Limit (Data Quality Objectives)
DUP	Duplicate
RPD	Relative Percent Difference
N/A	Not Available
LCS	Laboratory Control Sample
SRM	Standard Reference Material
MS	Matrix Spike
MSD	Matrix Spike Duplicate
ADE	Average Desorption Efficiency
MB	Method Blank
IRM	Internal Reference Material
CRM	Certified Reference Material
CCV	Continuing Calibration Verification
CVS	Calibration Verification Standard
LCSD	Laboratory Control Sample Duplicate

Sample Parameter Qualifier Definitions:

Qualifier	Description				
J	Duplicate results and limits are expressed in terms of absolute difference.				
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.				
MS-B	Matrix Spike recovery could not be accurately calculated due to high analyte background in sample.				
RPD-NA	Relative Percent Difference Not Available due to result(s) being less than detection limit.				
RRQC	Refer to report remarks for information regarding this QC result.				

Hold Time Exceedances:

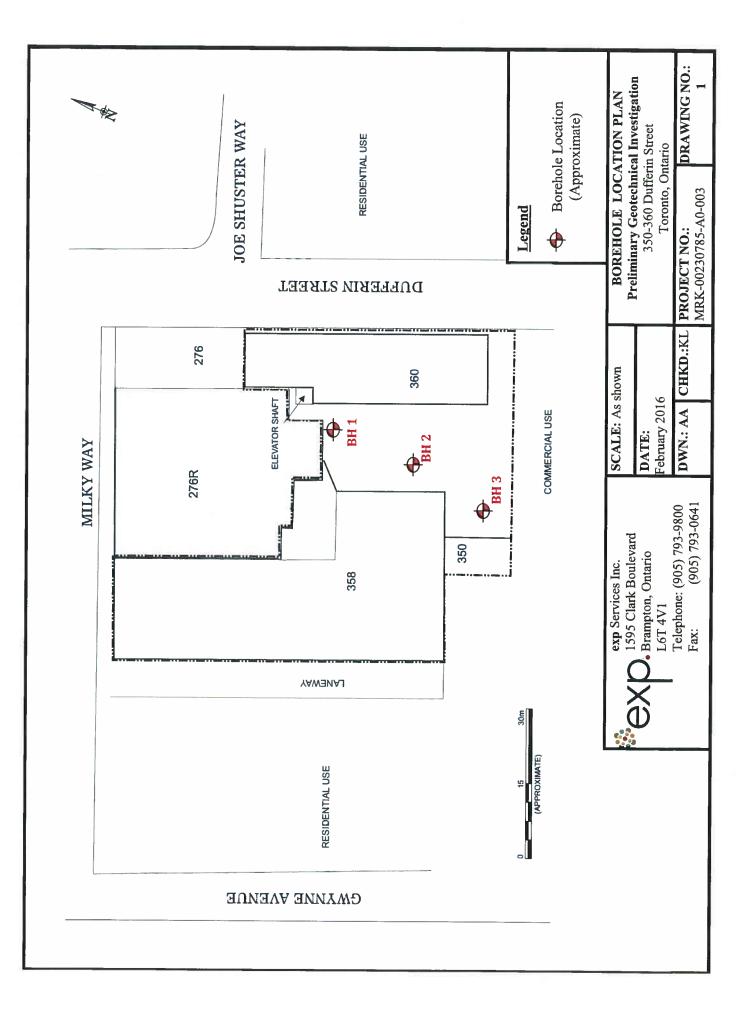
All test results reported with this submission were conducted within ALS recommended hold times.

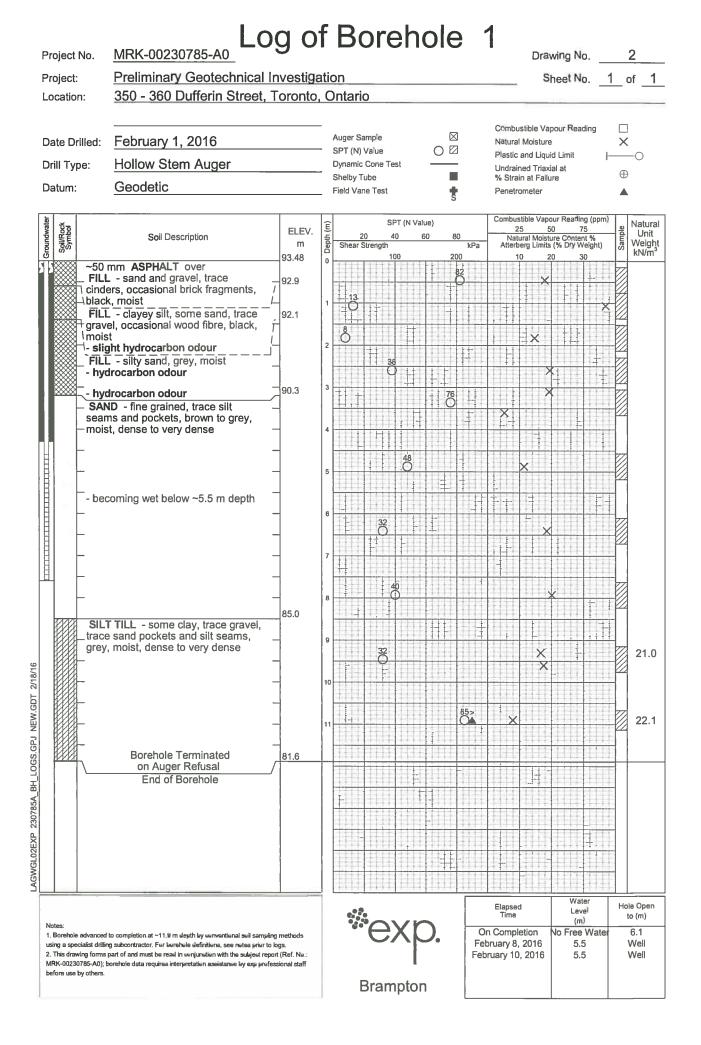
ALS recommended hold times may vary by province. They are assigned to meet known provincial and/or federal government requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by the US EPA, APHA Standard Methods, or Environment Canada (where available). For more information, please contact ALS.

The ALS Quality Control Report is provided to ALS clients upon request. ALS includes comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined data quality objectives to provide confidence in the accuracy of associated test results.

Please note that this report may contain QC results from anonymous Sample Duplicates and Matrix Spikes that do not originate from this Work Order.

COC Number: 20 - 893253


Page 1 of 1 W.


Report To	Contact and company name below will appe	ear on the final report		Reports / R		Turnaround Time (TAT) Requested														
Company:	Grounded Engineering		Select Report Fo	ormat: 🗹 PDF	ET EXCEL E ED	D (DIGITAL)	Ro	utine [R] if re	sceived by 3	Bpm M-F·	- no surch	arges apply]					
Contact:	Shelbo Plant		Merge QC/QC	I Reports with COA	VES 🗌 NO	🗌 N/A	40	day [P4] if red	ceived by 3p	pm M-F-	20% rust	surcharge	minimur	n						
Phone:		•••	Compare Resu	lts to Criteria on Report - p				day [P3] if re							AFFIX ALS BARCODE LABEL HERE (ALS use only)				RE	
	Company address below will appear on the fina	I report	Select Distributio	on: 🗹 EMAIL	MAIL 🛄 I	-AX		day [P2] if re day [E] if rec									(ALD USE	ony		
Street:	1 Buriyon Drie		Email 1 or Fax	spiant (De inforoishe	roundedens	.64														
City/Province:	TOSALOION		Email 2 Qc 21	in for ovising	Us rivinded en	5.60	Same day [E2] if received by 10am M-S - 200% rush surcharge. Additional fee may apply to rush requests on weekends, statutory holidays and non-routine test						utine tests	;						
Postal Code:	M4H 16-3		Email 3		J. Consecutiv	3.201	Date and Time Required for all E&P TATs:													
Invoice To	Same as Report To	D NO		Invoice Re	ecipients				For a	all tests wi	th rush TA	ls requeste	l, please i	contact you	Ir AM to cc	onfirm ava	alability.			
	Copy of Invoice with Report	NO	Select Invoice Di	istribution: 🔲 EM	AIL MAIL	FAX						Anal	/sis Re	quest						
Company:			Email 1 or Fax	Email 1 or Fax					Indicate	Filtered (F), Preserv	red (P) or F	iltered ar	nd Preserve	ed (F/P) t	velow			[a]	(s
Contact:			Email 2] 🗒 [] /	JIR!	tote
	Project Information		c	il and Gas Required	d Fields (client us	e)	CONTAINERS												STORAGE REQUIRED	96
ALS Account # /			AFE/Cost Center:		PO#] È	۶									1	2	2	(se
Job #: 21~	190		Major/Minor Code:		Routing Code:] ố [3										HOL	GE	RD
PO / AFE:	<u>`</u>		Requisitioner:															NO	NR/	N
LSD: 340	Dufferin Strett	~	Location:				비비												STO	H
ALS Lab Worl	k Order # (ALS use only):	7859	ALS Contact:		Sampler: D I		NUMBER	ste										SAMPLES	EXTENDED	SUSPECTED HAZARD (see notes)
ALS Sample #	Sample Identification	//	1	Date	Time		ΞÌ	4										1	N I	ΡE
(ALS use only)	(This description will			(dd-mmm-yy)	(hh:mm)	Sample Type	2	1000										A S		1 22
	SW-UF-BH117	appear on the report)	<u></u>	01-NOV-21	· · · · · · · · · · · · · · · · · · ·	GW									++				┝═┥	ا ش ا
	SW UF-DHITF			UT NUV LI	13-50	$\mathcal{O}^{\vee\vee}$	20								++				├ /	├ ──-
									+						++			+	\vdash	\vdash
									<u> </u>						$\downarrow \downarrow \downarrow$					
															++					
														-	+			1		<u> </u>
									+						+			+	┣──┦	
														—	+			'	\square	
							<u> </u>								┥			¹		ļ
														-						
		Notes / Specif	v Limits for result	evaluation by selecting	a from drop-down l	elow	1		- I I	S/	AMPLE	RECEIP	DETA	ILS (AL	S use c	only)		44	LI	
Drinking	g Water (DW) Samples ¹ (client use)			Excel COC only)	5 ·····		Coolin	ng Method:			KICE	~ /	PACKS] COOLIN	G INITI/	ATED	
Are samples taken from a Regulated DW System? TD:D∩+Q S∋			actor 15	Loo Se	1.20 52	+	Subm	ission Con	nments id	lentified	on Sam	ple Rece	pt Noti	fication:] NO		
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	in a		,	Coole	r Custody	Seals Inta	act:	YE	s ⊡ N/	A Sa	mple Cu	istody S	eals In	lact:	T YE	s 🗆	N/A	
Are samples for human consumption/ use?							INIITIAL COOLER TEMPERATÚRES °C FINAL COOLER TEMPERA					TEMPERAT	URES °C	<u>ç</u>						
T YE	IS 🔲 NO						1.2	8 9.2	2											
	SHIPMENT RELEASE (client use)	<u> </u>		INITIAL SHIPMENT	RECEPTION (AL	S use only)					FINA	****		ECEPTIC	ON (AL	S use c	only)			
Released by:	Issener Normber	1,2021 AS.33	Received by:	Loran	Date: (/1/2)	21	Time:	3Y Rec	eived by:	:		1	)ate:					Time:	:	
REFER TO BACK	PAGE FOR ALS LOCATIONS AND SAMPLING IN	FORMATION	•	WHI	TE - LABORATORY		N - CLIE	NT COPY											AUG 21	2020 FRONT

Failure to complete all portions of this form may delay analysis. Please fill in this form LEGIBLY. By the use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the back page of the white - report copy. 1. If any water samples are taken from a Regulated Drinking Water (DW) System, please submit using an Authorized DW COC form.

# **APPENDIX F**





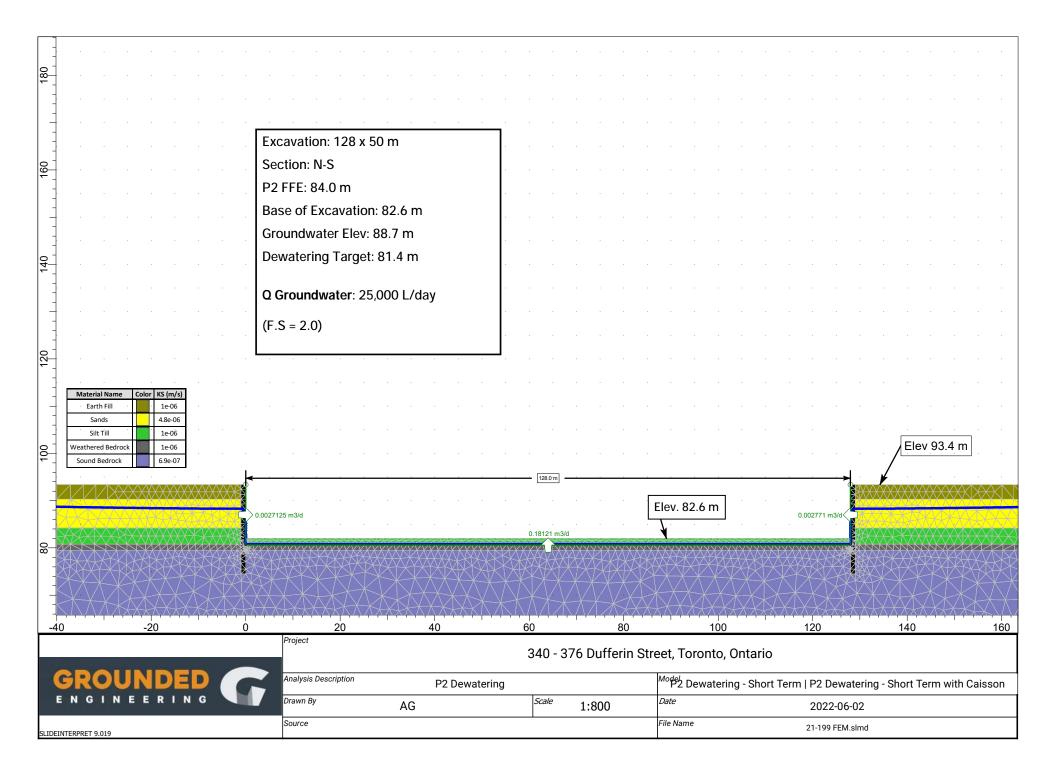


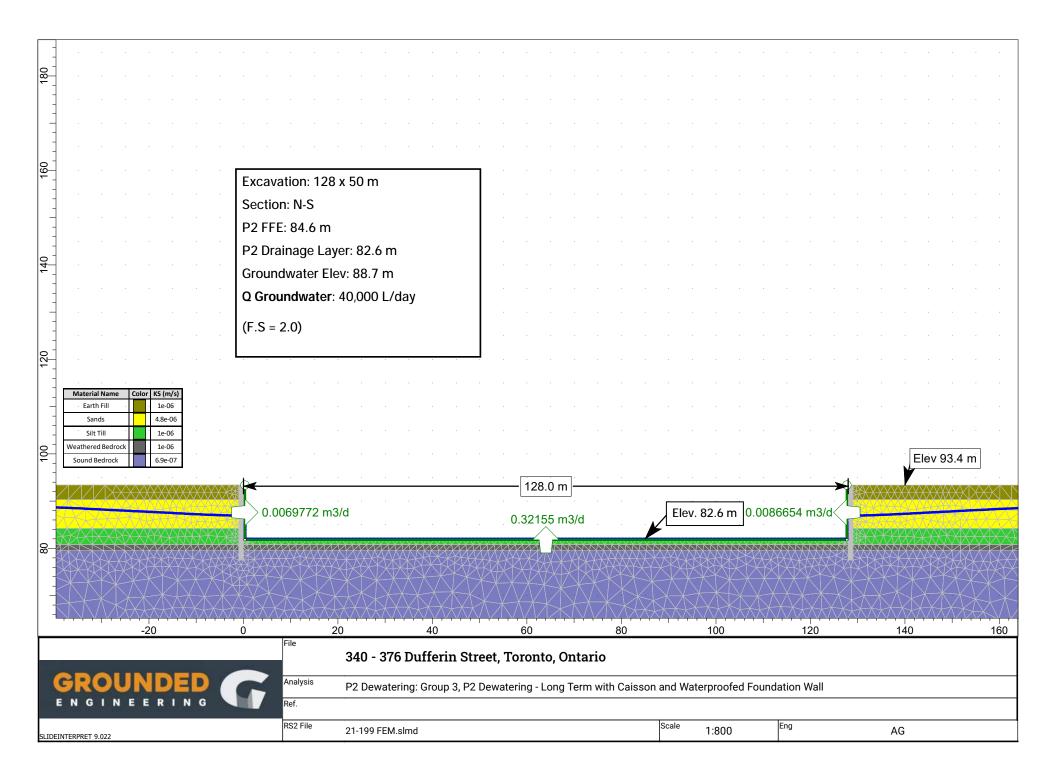
roje roje			MRK-00230785-A0 Preliminary Geotechnical	Investia	atio	on							wing N heet N			3 of
ocat		:	350 - 360 Dufferin Street,				0				_					
	_					Auger S	ampla						pour Rea	ding		,
Date Drilled:			January 29, 2016		-	SPT (N)	Value		0			and Liqu		ŀ		—0
rill 1	ур	e:	Hollow Stem Auger		Dynamic Cone Test Shelby Tube						ned Triax in at Fail			$\oplus$	)	
atur	n:		Geodetic		-	Field Va	ne Test		1	ŝ	Penetr	ometer				
č,				ELEV.	(E)			SPT (N Va	-			25 1	our Readli 50	75		Nat U
Soil/Rock			Soil Description	m	Depth (m		20 Strength	40	60	80 kPa 200			ure Conte s (% Dry V 20	nt % Veight)	Sample	We kN
			mm ASPHALT over mm CONCRETE over	93.21	0	<u>+</u> +				200						
	8h	FILL	- silty sand, some gravel, trace						-	ļ ļ		×				
	8	FILL	black, moist - clayey silt, some sand, trace	-	1	0 _F		-			t		×			
×	8	-	el, brown, moist	91.4		14 0		1 - 1 1								
		seam	D - fine grained, trace silt is and pockets, oxidized zones,	-	2	Ŧ	IF I			1 £					-2	
	F	-browi dens	n to grey, moist, compact to e	-			25 O						X		-0	
		-		-	3	++++	32									
		-		-		- + <u>+</u>		-				X			-4	
2	ŀ	-		-	4										8	
1	$\left  \right $	-		-			32	-								
	+	-		_	5		32 0					++>				
	-	- hec	oming wet below ~5.5 m depth	_				-	+							
		- 060	oming wer below 5.5 m deptil	_	6											
		_					1	3÷		117		111	X	111		
		-			7			+								
н. 1914 - С. 19 19 - С. 19		_														
·		_			8			46				X	同日			
- 1. 				84.7							同社				R	
		SILT trace	TILL - some clay, trace gravel, sand pockets and silt seams,							i - i						
H		grey,	moist, dense to very dense		9			44				Ę				22
		-		7			+								14	24
		-		1	10							14				
		-		1			-	50/150 m	im .	>		x				
		-			11							111		111	-ľ	
		-								8 8	X			111		23
		- _ cha	le fragments at spoon tip	-	12			54/150	mm			1141	1		-4	~
		-	.eginonto ar opoon up	-			<del>*-</del>					1111			14	
		CLIA		80.0	13						111	++++				
		with s	LE BEDROCK - interbedded shaley limestone and limestone	- 70.2					i Dinm Qinim					바비	-	
		layer	s, highly weathered, grey End of Borehole	79.3				00/5	9			+	TH		F	
							-									
	1							1111	111		++++	4144		tor		
							e				Elapse Time	d	Wa' Lev			le Op to (m)

Borehole advanced to completion at ~13.4 in depth by conventional soit sampling methods using a specialist drilling subcontractor. For levelole definitions, see notes prior to logs.
 This drawing forms part of and must be read in evolution with the subject report (Ref. Nu.: MRK-00230785-A0); borehole data requires interpretation assistance by exp professional staff before use by others.

Brampton

oject	•	Preliminary Geotechnical									S	heet N	io		of _
ocatio	n:	350 - 360 Dufferin Street,	Toronto	), C	)ntan	0									
ate D	rilled:	January 29, 2016			Auger S	ample			8		ustible Va I Moistur	apour Rea	ading		
rill Ty		Hollow Stem Auger		_	SPT (N) Dynamic		est	OE	2	Plastic	and Liqu	uid Limit	ŀ		-0
atum		Geodetic			Shelby T Field Va			1		% Stra	in at Fail ometer			⊕	
				_ 					S	Combu	stible Van	our Read	Da (anm)		
Soil/Rock Symbol		Soil Description	ELEV.	Depth (m)		20 Strength	SPT (N \ 40	60	80 kPa	Nat Attert	25 ural Mols berg Limit	50 ture Conte s (% Dry \	75 ent % Velght)	Sample	Natu Ur Wei kN/
		mm ASPHALT over	93.28	0	9		100		200		0		30		
	FILL	- clayey silt, some sand, trace el, trace organics, brown to black,			0 8										
	mois				0							X			19
<u></u>		ID - fine grained, occasional silt	91.5	2	l ¹⁴							×			19
	sean	ns, oxidized zones, brown to grey, it, compact to dense					40								
	-			3			Ψ								
	L		_			Č	5				×				
	-		_	4											
	L		_												
	-		_	5			39 0 -				×				
	- bec	coming fine to medium grained	_											-	
		wet below ~5.5 m depth	_	8											
	-		_			0 0						×			
	$\vdash$		-	7											
	-		-		12										
	-		-	8	10°						<u> </u>				
000	SIL	TTILL - some clay, trace gravel,	84.8												
		e sand pockets and silt seams, , moist, very dense	-	9					88						
	1		-						Ö		×				2
	-		-	10											
	} } - sha	ale fragments at spoon tip	-				60	/150 mm			×				
	_		-	11											
			-												
			-	12			50/100	mm		×					
			79.9	13											
	with	LE BEDROCK - interbedded shaley limestone and limestone		4.4			61	)/50 mm 0						-	
	layer	rs, highly weathered, grey		14			60	)/50 mm							
		End of Borehole						Y							
						e,				Elapse	d	Wa Le		Ho	le Op


using a specialist drilling subcontractor. For brokeled effortions, see notes prior to logs. 2. This drawing forms part of and must be read in conjunction with the subject report (Ref. No.: MRK-00230785-A0); borehole data requires interpretation assistance by exp professional staff before use by others.


Brampton

# **APPENDIX G**









# **APPENDIX H**



SHORT TERM - CAISSON SHORING												
Excavation D	imensions [m]		Rainfall Data									
N-S	128		Year	100								
E-W	50		Hour	3	12							
Area (m2)	6400		Depth (mm)	25	94							
Perimeter (m)	356		Depth (m)	<b>Depth (m)</b> 0.025 0.								
S	ection		Flow [m3/day]	Length [m]	Volume [L/day]							
	Base		0.18121	50	9,061							
	Sides		0.00277	356	986							
(extra row if s	ides are different)			0	-							
	Total				10,047							
Factor of	of Safety	2.0			20,093							
			-	-								
Storm Events			Summary	L/day	L/min							
2 Year [L/day]	100 Year [L/day]		Groundwater	25,000	17.4							
160,000	602,000		Rainfall	160,000	111.1							
			Total	185,000	128.5							

LONG TERM - CAISSON SHORING											
Excavation Di	mensions [m]	Rainfall Data									
N-S	128	Year	2	100							
E-W	50	Hour	3	12							
Area (m2)	6400	Depth (mm)	25	94							
Perimeter (m)	356	Depth (m)	0.025	0.094							
S	ection	Flow [m3/day]	Length [m]	Volume [L/day]							
	Base	0.28078	50	14,039							
	Sides	0.0835	356	29,726							
(extra row if s	ides are different)		0	-							
	Fotal			43,765							
Factor o	f Safety 2.0			87,530							
			•								
Infiltratio	n [L/day]	Summary	L/day	L/min							
	8085		90,000	62.5							
		Infiltration	9,000	6.3							
		Total	99,000	68.8							

#### LONG TERM - CAISSON SHORING WITH WATERPROOFED FOUNDATION WALLS

Excavation Dimensions [m]						
N-S	128					
E-W	50					
Area (m2)	6400					
Perimeter (m)	356					

Rainfall Data									
Year	2	100							
Hour	3	12							
Depth (mm)	25	94							
Depth (m)	0.025	0.094							

Section	Elour Im2/doul	Longth [m]	Volume [L/day]
Section	Flow [m3/day]	Length [m]	volume [L/day]
Base	0.32155	50	16,078
Sides	8.67E-03	356	3,085
(extra row if sides are different)		0	-
Total			19,162
Factor of Safety 2.0	)		38,324
	_		
Infiltration [L/day]	Summary	L/day	L/min
8085	Groundwater	40,000	27.8
	Infiltration	9,000	6.3
	Total	49,000	34.0