

450 Dufferin Street, Toronto

Site Servicing and Stage 1 Stormwater Management Report

November 4, 2022

Prepared for:

HM RK (450 Dufferin) Ltd.

450 Dufferin Street

Site Servicing and Stage 1 Stormwater Management Report

HM RK (450 Dufferin) Ltd.

This document is protected by copyright and was prepared by R.V. Anderson Associates Limited for the account HM RK (450 Dufferin) Ltd. and for use by the City of Toronto. It shall not be copied without permission. The material in it reflects our best judgment in light of the information available to R.V. Anderson Associates Limited at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. R.V. Anderson Associates Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

RVA 205396.01 November 4, 2022

450 Dufferin Street, Toronto

TABLE OF CONTENTS

1.0	INTRO	ODUCT	ION	3
2.0	BACK	GROU	ND	3
	2.1 2.2 2.3	Existir Propo Backg	ng Conditions sed Redevelopment round and Resource Information	3
3.0	SERV	ICING I	INVESTIGATION	5
	3.1 3.2	Found Water	lation Drainage Servicing	5
		3.2.1 3.2.2 3.2.3	Water Servicing Criteria Existing Water Servicing Proposed Water Servicing	6 7 7
			3.2.3.1 Domestic Water Demand Analysis3.2.3.2 Fire Flow Analysis3.2.3.3 Proposed Watermain Service Connections	7
		3.2.4	Capacity of Existing Watermain System	8
	3.3	Sanita	ary Servicing	9
		3.3.1 3.3.2 3.3.3	Sanitary Servicing Criteria Existing Sanitary Servicing Proposed Sanitary Servicing	9 9 10
			3.3.3.1 Sanitary Demand Analysis 3.3.3.2 Proposed Sanitary Service Connection	10 10
	3.4	Storm	Servicing	11
		3.4.1 3.4.2 3.4.3	Storm Servicing Criteria Existing Storm Servicing Proposed Storm Servicing	
			3.4.3.1 Proposed Storm Service Connection3.4.3.2 Allowable Storm Discharge3.4.3.3 Proposed Storm Discharge	
		3.4.4	Stormwater Management Plan	13
	3.5	Comb	ined Sewer Capacity	15
		3.5.1 3.5.2 3.5.3	Criteria and Approach Existing and Proposed Combined Sewer Analysis Capacity for Short Term Private Water Discharge	15 16
4.0	EROS	SION AN	ND SEDIMENT CONTROL DURING CONSTRUCTIO	N16
5.0	CONC	CLUSIO	N	17
HM RK	(450 Du	fferin) Ltd		RVA 205396.01

5.1	Foundation Drainage	17
5.2	Water	17
5.3	Sanitary	17
5.4	Storm	17
5.3 5.4	Sanitary Storm	17 17

LIST OF TABLES

Table 3.1 – Estimated Water Demand Table 3.2 – Estimated Sanitary Demand Table 3.3 – Estimated Storm Flow Directed to Combined Sewer in Dufferin Street Table 3.4 – Estimated Sanitary Flow Directed to Dufferin Street Combined Sewer

LIST OF FIGURES

Figure 2.1 – Site Location

APPENDICES

APPENDIX A	 Architectural Plans and Site Statistics
APPENDIX B	- Water Demand Analysis
APPENDIX C	- Sanitary Demand Analysis
APPENDIX D	- Post Development Peak Discharge Rate and Required Storage
APPENDIX E	- Conceptual Civil Drawings

APPENDIX F - Reference Documents

1.0 INTRODUCTION

HM RK (450 Dufferin) Ltd. (the Owner) is proposing the redevelopment of 450 Dufferin Street in the City of Toronto.

R.V. Anderson Associates Limited (RVA) has been retained by the Owner to prepare a Site Servicing and Stage 1 Stormwater Management (SWM) Report in support of Zoning By-law Amendment (ZBA) application for the proposed site redevelopment.

The scope of this report specifically includes:

- Identification and review of existing municipal storm, sanitary and water services available for the site;
- Identification of the City of Toronto criteria with respect to sanitary, water and storm servicing including stormwater management criteria for the redevelopment of the site, in accordance with the City of Toronto Wet Weather Flow (WWF) Guideline criteria and targets;
- Estimate existing sanitary and storm demands from the site;
- Estimate water, sanitary and storm demands that will result from the redevelopment;
- Investigation of the capacity of existing municipal water mains and sewers;
- Calculation of allowable post-development peak storm discharge rates;
- Calculation of WWF water balance target criteria and development of appropriate methods to achieve the criteria;
- Provide a summary of proposed servicing of the site with water, sanitary and storm services;
- Recommendation and description of proposed stormwater management (SWM) system for the site to address water balance, water quality, and discharge rate targets.

2.0 BACKGROUND

2.1 Existing Conditions

The site is located on the northwest corner of Dufferin Street and Alma Avenue in the City of Toronto.

The 0.1495-hectare site currently has a single-storey building occupied by a clothing manufacturer. The existing building frontage takes up the entirety of the east property line along Dufferin Street. A paved parking area occupies the rear of the property and encompasses approximately 75% of the total site area.

The site is bounded by Alma Street to the south and Dufferin Street to the east. A 4.57m wide sewer 'block' occupies the adjacent property to the north, and a produce warehouse at the adjacent property to the west. Refer to Figure 2.1 for site location.

Figure 2.1 – Site Location

2.2 **Proposed Redevelopment**

The proposed site redevelopment is currently assumed of an approximately fifteen (15) storeys mixed-use building with two (2) levels of underground parking. Commercial/employment space will occupy a portion of the ground level and mezzanine, and the remainder will be residential units. The new building will fall under a single ownership.

The width of the existing sewer block to the north of the site does not meet current City standards which require a minimum 6.0m wide easement for sewers. As a result, a 1.43 m wide strip of land will be reserved as a municipal sewer easement for the purpose of effectively widening the existing sewer block, to a total width of 6.0m.

Refer to Appendix A for the architectural site plans.

2.3 Background and Resource Information

In preparing this report, the following information was obtained and reviewed:

- PUCC Drawing 15-B-96.
- Toronto Sewer and Water Atlas Maps of surrounding underground infrastructure, dated January 9, 2010.
- City As-built Plan and Profile Drawings:
 - Alma Avenue Drawing A-269
 - Brock Avenue Drawing B-89
 - Dufferin Street Drawing D-18
 - o Dufferin Street Drawing U557-025, U557-026
- Topographic Survey of Part of Lot 8, Registered Plan 294, prepared by R. Avis Surveying Inc., signed July 29, 2020
- Site plan and project statistics, provided by Superkul Architects

3.0 SERVICING INVESTIGATION

Information with respect to existing municipal services and utilities was determined from PUCC drawings, record plan and profile drawings, sewer and water atlas maps obtained form the City of Toronto and a site visit undertaken in August 2020. A Subsurface Utility Engineering (SUE) Quality Level B (QL-B) Investigation has also been conducted in September 2022.

3.1 Foundation Drainage

The current City Sewer Code and Foundation Drainage Policy prohibits the discharge of long-term foundation drainage from within the saturated zone of the ground, to a municipal sewer, for new applications submitted after January 2022.

A hydrogeological review prepared by Terrapex, dated October 14, 2022, has been completed for the site. This report indicates that the groundwater table is approximately 0.9 to 4.3m below ground surface (mbgs) on shallowest and average depth, respectively.

Based on samples taken and analyzed for water quality, the groundwater is suitable for discharge to the sanitary/combined sewer but not to storm (i.e. Municipal Code Chapter 681, Table 1 and Table 2 respectively). Therefore, pre-treatment would be required prior to discharge into the storm sewer system. However, discharging into the sanitary sewer system would not require pre-treatment.

In consideration of the aforementioned City Policy, it is currently envisioned that there will be no long-term discharge of foundation drainage for the site.

Regarding short-term dewatering for the development, the report estimates groundwater inflow during construction range from 49,400 L/day (0.57 L/s), based on an assumed excavation bottom of 83.5 masl and with a safety factor of 2. It is proposed that the short-term groundwater will be discharged into the 450mm combined sewer located along Dufferin Street, in front of the site.

To facilitate construction dewatering, a short-term Private Water Discharge Agreement (PWDA) application will be submitted to the Environmental Monitoring & Protection (EM&P) Unit of Toronto during construction. However, as the groundwater taking volume is less than 50,000 L/day, a Environmental Activity and Sector Registry (EASR) or Permit to Take Water (PTTW) will not be required.

Refer to Hydrogeological Review by Terrapex, and Watertight Foundation Letters in Appendix F.

3.2 Water Servicing

3.2.1 Water Servicing Criteria

The City of Toronto's Design Criteria for Sewers and Watermains (January 2021) was used to analyze the sanitary demand from the proposed development. The City criteria are generally summarized as follows:

- Water supply systems should be designed to satisfy the greater of maximum day demand plus fire flow or peak hour demand;
- Average domestic water demands of 190 litres per capita per day for high-rise or low-rise apartment buildings and condominiums with greater than six (6) units;
- Maximum day and peak hour factors for apartments are 1.30 and 2.50 respectively
- Maximum day and peak hour factors for commercial are 1.10 and 1.20 respectively

- Fire flow requirements for the site shall be based on Fire Underwriters Survey (FUS) (1999) and are to not exceed the available flow in the municipal watermain that the site will connect to at a minimum residual pressure of 140 kPa (20 psi).
- Population Densities as follows:
 - 1-Bedroom 1.4 persons per unit
 - 2-Bedroom 2.1 persons per unit
 - 3-Bedroom 3.1 persons per unit
 - Townhouse 2.7 persons per unit

3.2.2 Existing Water Servicing

Based on City records, there is an existing 300mm PVC watermain on the west side of Dufferin Street. The watermain was installed in 2013/2014. There is an old 300mm watermain on the east side of Dufferin Street that was abandoned in place when the new 300mm PVC watermain was installed. All service connections would have been transferred to the new watermain during construction.

There is an existing fire hydrant located in the northeast corner of Dufferin Street and Waterloo Avenue, and another hydrant in the northeast corner of Dufferin Street and Alma Avenue. These two hydrants can provide coverage of the entire site within 90m.

Based on a site visit on August 21, 2020, a domestic water service enters the building from Dufferin Street at the east face of the building.

3.2.3 Proposed Water Servicing

3.2.3.1 Domestic Water Demand Analysis

The total estimated average daily flow rates, maximum day, and peak demand rates required for the future development are estimated to be as follows:

	Average Day Demand (L/s)	Maximum Day Demand (L/s)	Peak Hour Demand (L/s)
Residential	0.57	0.74	1.43
Commercial	0.02	0.02	0.03
TOTAL	0.59	0.76	1.46

Table 3.1 – Estimated Water Demand

Refer to Appendix B for water demand analysis calculations.

3.2.3.2 Fire Flow Analysis

In accordance with the City of Toronto Design Criteria for Sewers and Watermains, fire flows shall not be less than 80 L/s (4,800L/min) for a 2-hour duration in addition to maximum daily domestic demand with a residual pressure of not less than 140 kPa (20 psi). Additionally, fire flows shall not be less than 83.3L/s (5,000 L/min) for a 4-hour duration for commercial/employment areas. This flow is to be delivered with a residual pressure of not less than 140 kPa (20 psi).

Calculations using the Fire Underwriters Survey (FUS) indicate a maximum required fire flow of approximately 116.7 L/s (7,000 L/min) for the development (based on fire resistive construction with a sprinkler system designed to NFPA, and vertical openings and exterior vertical communications properly protected for a one-hour rating).

Refer to Appendix B for fire flow analysis calculations.

As described in Section 3.2.1, the water supply system should be designed to satisfy the greater of peak hour demand or maximum day demand plus fire flow. Therefore, the maximum day demand plus fire flow rate (i.e. 0.76 L/s + 116.7 L/s = 117.5 L/s (7,046 L/min)) is the governing requirement.

3.2.3.3 Proposed Watermain Service Connections

In accordance with the City of Toronto Municipal Watermain Code a new domestic water service will be required for the new building and existing services removed and capped at the watermain.

A fire service will also be required for the building sprinkler system. The proposed water services will be connected to the existing 300mm diameter Dufferin Street watermain.

Approximately 2.0 m in front of the building face, domestic water service will be branched off the fire service in an "h" configuration. The fire service line will continue into the building as a fire water service.

The location of the water service connections will be entering from the east face of the building, where there will be a water meter room in the building basement.

Refer to Appendix E for conceptual servicing plan GS-1.

3.2.4 Capacity of Existing Watermain System

To evaluate the adequacy of the existing 300mm watermain on Dufferin Street, a hydrant flow test has been conducted for the hydrant at the northeast corner of Dufferin Street and Waterloo Avenue. The results of this flow test indicate that the watermain is capable to supplying 347 L/s at 20psi (150 kPa). Since the design water demand of 117.3 L/s is less

than 347 L/s, it can be concluded that the capacity of the existing City watermain network is sufficient to meet the demand of the proposed redevelopment/use.

Refer to Appendix B for hydrant flow test result.

3.3 Sanitary Servicing

3.3.1 Sanitary Servicing Criteria

The City of Toronto's Design Criteria for Sewers and Watermains (January 2021) was used to analyze the sanitary demand from the future development. The City criteria are generally summarized as follows:

- Average domestic residential sewage flows of 450 litres per capita per day for design of new sewers.
- Average domestic residential sewage flows of 240 litres per capita per day for analysis of existing sewers (separated systems)
- The peak domestic sewage flow to be calculated by utilizing a calculated Harmon Peaking Factor of [M = 1 + 14 / (4+P^{0.5})]
- Average commercial/industrial/institutional flows of 180,000 litres per floor hectare per day for new local sewers (peaking factor included in average flow)
- A dry weather peak infiltration allowance of 0.26 L/s/ha is required for all sewers
- Combined sewer flows will include dry weather domestic flows plus the runoff from a 2-year storm event
- Population Densities as follows:
 - 1-Bedroom 1.4 persons per unit
 - 2-Bedroom 2.1 persons per unit
 - o 3-Bedroom 3.1 persons per unit

3.3.2 Existing Sanitary Servicing

A review of the City's Sewer Atlas Mapping indicates that the Site is located in an area of Toronto that is predominantly serviced by combined sewers. Based on these records and City as-built Plan and Profile drawings, there are several combined sewers in the vicinity of the Site.

• A 450mm diameter vitrified clay combined sewer located within a sewer block adjacent to the north of the site; this pipe directs south into the 450mm diameter

vitrified clay combined sewer located on the west side of Dufferin Street, and into the 450mm diameter vitrified clay combined sewer which drains to the east within Alma Street (east of Dufferin Street).

- A 900mmx600mm diameter brick egg shaped combined sewer located near the centreline of Dufferin Street right-of-way.
- Both above noted sewers connect to the 900 x 600mm brick combined sewer on Gladstone Avenue and drain to the south towards Queen Street West. This sewer eventually connects to the trunk sewer on King Street West.

The estimated peak sanitary discharge rate from the existing site is estimated to be 0.05 L/s (refer to Appendix C for calculations).

Based on a site visit on August 21, 2020, a sanitary service connection exits the building at the east face of the building towards Dufferin Street, into the 450mm combined sewer immediately in front of the 450 Dufferin property.

3.3.3 Proposed Sanitary Servicing

3.3.3.1 Sanitary Demand Analysis

The proposed site redevelopment will result in an estimated total peak sanitary flow rate of 5.78 L/s, which represents an estimated increase of 5.73 L/s over the existing sanitary flow rate. The estimated breakdown of peak sanitary discharge from the redevelopment is as follows:

	Sanitary Flow (L/s)
Total Residential Peak Flow	5.56
Total Commerical Peak Flow	0.18
Total Infiltration Peak Flow	0.04
TOTAL	5.78

Fable 3.2 -	 Estimated 	Sanitary	Demand
--------------------	-------------------------------	----------	--------

Refer to Appendix C for sanitary servicing analysis calculations.

3.3.3.2 Proposed Sanitary Service Connection

As required by the City municipal code with respect to sewers, a new sanitary service connection will be required, and the existing service connections will be required to be removed.

In accordance with the City Sewer Code, a sanitary control maintenance hole (MH) will be provided near the property line for City sampling purposes. The new service connection will be connected to the 450mm Dufferin Street combined sewer.

The capacity of the receiving combined sewer is discussed in section 3.5 of this report. Refer to Appendix E for conceptual servicing plan GS-1.

3.4 Storm Servicing

3.4.1 Storm Servicing Criteria

The City of Toronto Wet Weather Flow Management (WWFM) Guidelines encourages the use of a "treatment train" approach to stormwater management that considers storm run-off as a resource. This approach considers best management measures that can be undertaken at the source, conveyance and end of pipe locations. Opportunities to allow stormwater run-off to be infiltrated back into the ground at the source either by directing run-off to pervious surfaces or by way of infiltration/exfiltration techniques are key components of the City's WWFM guidelines.

Based on the City's WWFM Guidelines (November 2006), the following general SWM criteria would apply to the future development:

- <u>Water Balance</u>: Retain stormwater on-site to the extent practicable to achieve the same level of annual volume of overland runoff from the site in the predevelopment condition. The maximum allowable annual volume is 50% of the total average annual rainfall depth (equates to the capture and retention of approximately 5 mm of runoff on a daily event basis).
- <u>Water Quality:</u> Provide long-term average removal of 80% of Total Suspended Solids on an annual loading basis from the post-development site.
- <u>Water Quantity (Rate Control)</u>: Control flows from the site during all design storm events (2 year through 100 year design storm) to a rate no greater than the peak run off rate that would be generated on the site in a 2 year storm event with a runoff coefficient C=0.50. Runoff generated from all storm events up to the and including the 100-year event shall be detained on site.
- Run-off generated on the entire site, in all storm events, up to and including the 100-year event, shall be contained on-site; and
- Maintain existing drainage patterns, ensuring adjacent properties are not adversely affected.

3.4.2 Existing Storm Servicing

There are no municipal storm sewers within the frontage of the site. As indicated in Section 3.3.2 of this report, only combined sewers exist across the front of the site along Dufferin Street.

Based on a site visit conducted on August 21, 2020, there is no existing stormwater management plan for the Site. Existing storm runoff from the building rooftop (365m²) drains via downspouts onto the paved parking area. There is no existing catch-basins located in the parking lot; storm runoffs sheet flows towards Alma Avenue and captured by street catch-basins, which ultimately discharges into the Dufferin Street combined sewer.

Using the Rational Method Equation Q = CiA, the existing 2-year and 100-year storm event existing peak storm discharge rates from the site can be calculated as follows:

$$Q_{2yr} = 2.78 \ x \ CiA = 2.78 \ x \ 0.90 \ x \ 88.20 \ mm/hr \ x \ 0.1495 ha = 33.0 \ L/s$$

$$Q_{100yr} = 2.78 \ x \ CiA = 2.78 \ x \ 0.90 \ x \ 250.3 \ mm/hr \ x \ 0.1495 ha = 93.6 \ L/s$$

3.4.3 Proposed Storm Servicing

3.4.3.1 Proposed Storm Service Connection

It is noted that the City Municipal Code, Chapter 681 generally prohibits a storm connection from a site to the municipal sewer. However, in the case of site developments that are not individual single-family lots, a storm service connection is required to meet WWFM Guidelines and implement the required SWM. Therefore, the SWM plan serves as a request through the City of Toronto for a storm service connection and exemption from the associated requirements in the Sewer Code.

As required by the City municipal code with respect to sewers, a new storm service connection will be required, and the existing service connection will be required to be removed.

In accordance with the City Sewer Code, a storm control MH will be provided near the property line for City sampling purposes. This MH will be incorporated into the basement structure where the basement extends out from the finished portion of the above ground building.

The new storm sewer service connection will be connected to the 450mm Dufferin Street combined sewer.

The storm service connection will convey controlled drainage from the on-site SWM system which will be employed to meet the City's stormwater discharge requirements outlined in section 3.4.4 of this report.

Refer to Appendix E for conceptual servicing plan GS-1.

3.4.3.2 Allowable Storm Discharge

Based on the WWFMP Guidelines, the allowed peak discharge from the site is to be based on controlling the discharge rate to the existing condition with a maximum runoff coefficient of C=0.5. Since the existing site is 100% impervious, a runoff coefficient of C=0.5 would therefore apply to the site and the allowed peak discharge rate from the redeveloped site can be calculated as follows:

 $Q_{allowable} = 2.78 \ x \ CiA = 2.78 \ x \ 0.50 \ x \ 88.20 \ mm/hr \ x \ 0.1495 \ ha = 18.3 \ L/s$

The capacity of the receiving combined sewer is discussed below in section 3.5.

3.4.3.3 Proposed Storm Discharge

SWM measures will be employed as discussed in the following section to limit the peak discharge rate to the total allowable 18.3 L/s. This will result in a net decrease in storm peak discharge rate of 14.7 L/s. See Table 3.3 for details.

Table 3.3 – Estimated Storm	Flow Directed to C	Combined Sewer in Dufferin Street
-----------------------------	--------------------	-----------------------------------

	Area (m2)	Pre Development 2-Year Storm (L/s)	Allowable Discharge (L/s)	Post Development 2-Year Storm (L/s)	Difference (L/s)
Existing	1495	33.0	-	-	-33.0
Proposed	1495		18.3	18.3	18.3
TOTAL					-14.7

Note: The maximum allowable post development 2-year discharge flow is 18.3 L/s with a C=0.5.

Refer to Appendix D for post-development storm peak discharge rate and preliminary detention storage calculations.

3.4.4 Stormwater Management Plan

With no storm water control installed at the subject site under existing conditions, the objectives of the stormwater management plan for the future development are to increase

runoff retention on site, improve water quality, and reduce the amount of runoff leaving the development site into the downstream receiving sewers.

As noted in section 3.4.3, a new storm service connection to the 450mm combined sewer is required to service the future development. A detailed (Stage 2) stormwater management (SWM) report will be prepared to support the proposed Site Plan application for the redevelopment. This plan will be comprised of a number of different components that will combine to achieve WWFM Guideline targets. The conceptual SWM plan at this stage is summarized as follows:

- 1) The pre-development storm drainage patterns will be maintained in the postdevelopment condition to the degree possible, with storm connection to Dufferin Street.
- 2) As per WWFM Guidelines, the building rooftop area is not subject to vehicular traffic, and the application of sand and de-icing salt constituents, petroleum hydrocarbons and heavy metals. As such, the stormwater generated from the roof area is considered clean and can satisfy 80% TSS removal efficiency for the purposes of water quality control.
- 3) A portion of the sewer easement located along the north property line is uncovered and will be receiving storm runoff. The runoff generated within this easement area will flow uncontrolled into the Dufferin Street right-of-way into the street catch-basins. The runoff from this area will be accounted for as uncontrolled flow to ensure the total peak flow from the site will not exceed the allowable rate outlined in Section 3.4.3.2. The 100year storm peak flow from this area can be calculated as follows:

$$Q_{Easement(100-yr)} = 2.78 x CiA = 2.78 x 0.25 x 250.3 mm/hr x 0.0066ha = 1.1 L/s$$

As outlined in section 3.4.3.2, the total allowable discharge rate from the site is 18.3 L/s. Since the uncontrolled peak flow from the sewer easement is calculated to be 1.1 L/s, the allowable discharge from the remainder of the site is calculated as follows:

$$Q_{Allowable} - Q_{Easement(100-yr)} = 18.3 - 1.1 = 17.2 L/s$$

5) As the building canopy extends to the property limit (with exception of portion of the sewer easement area and a small area in the southeast corner), storm runoff generated from within the site boundary are captured by area drains within the building rooftop and are considered clean and satisfy 80% TSS removal efficiency. As such, no stormwater treatment device is proposed for the site.

- 6) A stormwater management (SWM) tank will be incorporated into the basement level of the building to provide the detention volume associated with the controlled rate from the site. The tank will be placed in a location where the underground foundation walls extend beyond the limits of the above ground building, allowing for maintenance access via openings in the basement roof slab to the finished grade outside of the building. The access openings will be grated to provide a means for the tank to safely overflow to grade and out to the public roadway during storm events that exceed its capacity (i.e. greater than the 100-year design storm).
- 7) The SWM tank will also serve to capture and retain harvested rainwater for reuse. The tank will have gravity outlet through an orifice control to a storm control MH accessible by the City. The portion of the tank located above a gravity outlet will provide the required detention storage for rate control and the portion of the tank located below the gravity outlet will provide the required rainwater harvesting volume to meet the water balance requirements. The rainwater captured in the lower portion of the tank would be pumped out and into a dedicated reuse system designed by others. Possible uses for harvested rainwater currently being considered include irrigation or grey-water for toilet flushing. Based on the current site plan, a total retention volume of 5.7 m³ will be required for water balance.
- 8) Preliminary estimates of detention storage for the site, using the Modified Rational Method, indicate that the required total detention volume is approximately 60 m³. To achieve the quantity control requirement, an 68mm orifice plate at the outlet of the SWM tank will limit storm flow to the allowable peak discharge rate of 17.2 L/s. Refer to Appendix D for post-development storm peak discharge rate and preliminary detention storage calculations.

3.5 Combined Sewer Capacity

3.5.1 Criteria and Approach

As indicated in Section 3.3.3.1, the proposed redevelopment will result in an increase in sanitary demand on the municipal combined sewer. Based on 450 L/cap/d, this increase is estimated to be 5.73 L/s. The City requires an assessment of the impact of the development on their sewer system. The City's Sewer Capacity Assessment Guidelines dated July 2021, provide a methodology for assessing combined sewer capacity. This methodology initially requires an assessment of proposed versus existing discharge. If it determined that the proposed discharge is less than the existing discharge, then the system is deemed to have adequate capacity.

3.5.2 Existing and Proposed Combined Sewer Analysis

A review of pre and post combined sewer demands was undertaken to assess the impact of the development on the existing combined sewer system and establish the maximum discharge rate for the SWM system, and is summarized below in the following table:

	Existing Conditions (L/s)	Proposed Conditions (L/s)	Difference (L/s)
2 Year Storm Flow (L/S)	33.0	18.3	-14.7
Sanitary Flow (L/s)	0.05	5.78	5.73
TOTAL (L/s)	33.05	24.08	-8.97

 Table 3.4 – Estimated Sanitary Flow Directed to Dufferin Street Combined Sewer

Table 3.4 indicates that as a result of controlling the peak storm discharge from the site to comply with the WWFM guidelines, there is a decrease in total storm and sanitary discharge to the Dufferin Street combined system in the post-development condition.

It is noted that the redeveloped site does not propose to any discharge of stormwater to the ground surface at the rear of the site as is the case in the existing condition. Therefore, there will also be a net decrease of discharge that enters the City combined drainage system from the parking lot.

3.5.3 Capacity for Short Term Private Water Discharge

As indicated in Section 3.1 of this report, since final hydrogeological investigation is completed at this time, short-term discharge rate will be revisited at a subsequent submission.

The approach to determining available capacity for the short-term discharge is that it cannot exceed the existing total site discharge from the site to the combined sewer. Therefore, at the time of a PWDA application for short term discharge, the peak discharge would have to be limited to less than 33.05 L/s (i.e. existing total discharge from the site).

4.0 EROSION AND SEDIMENT CONTROL DURING CONSTRUCTION

Measures are to be taken during construction to ensure that erosion and/or transportation of sediments off-site is controlled. Mitigation measures include:

• Erection of sediment control fence prior to construction, and maintenance throughout construction activities;

- Construction of a clear-stone "mud-mat" at construction site exists to control the tracking of sediments off-site from the tires of vehicles;
- Use of watering for dust control;
- Application to the City for a permit to discharge construction water, including the testing and sediment removal pre-pumping measures required to meet the City permit requirements and sewer use bylaw;

5.0 CONCLUSION

With respect to the proposed land use change and assumed development parameters at 450 Dufferin Street, the proposed site servicing and stormwater management system will address the requirements of the City of Toronto, as follows:

5.1 Foundation Drainage

Pursuant to City Foundation Drainage Policy, it is currently envisioned that there will be no long-term discharge of foundation drainage for the site.

5.2 Water

A fire water service with a domestic branch is proposed to be connected to the 300mm diameter watermain on Dufferin Street. A peak water demand of 117.5 L/s has been estimated for the future development. A hydrant flow test has been completed that indicates that the existing watermain network is capable of supplying 347 L/s at 20Psi and therefore it can be concluded that there is sufficient watermain capacity for the proposed redevelopment / use change.

5.3 Sanitary

A sanitary service connection to the existing 450mm combined sewer located on Dufferin Street will convey an estimated peak sanitary discharge of 5.78 L/s from the proposed site redevelopment. While this peak discharge is greater than the estimated sanitary discharge from the existing site, the storm discharge from the site will be controlled and the foundation drainage limited to result in a net-zero post redevelopment discharge to the Dufferin Street combined sewer.

5.4 Storm

A storm service connection to the existing 450mm combined sewer located on Dufferin Street will convey a maximum controlled discharge of less than 17.2 L/s from the proposed building SWM system. This discharge rate accounts for the uncontrolled peak rate of 1.1

L/s from the sewer easement. This discharge rate was established so that in conjunction with the sanitary discharge, the total discharge from the site to the Dufferin Street combined sewer in the post development condition does not exceed the total predevelopment discharge to the Dufferin Street combined sewer. A SWM detention tank with an 68mm orifice plate will provide the required detention volume for that discharge rate.

The implementation of rainwater harvesting for reuse such as irrigation or toilet flushing will serve to meet the City's water balance target and limit the total average runoff volume to 50% of the annual average rainfall.

R. V. ANDERSON ASSOCIATES LIMITED

Report Prepared By

Alex Wong, P.Eng. Project Manager

APPENDIX A

Architectural Plans and Site Statistics

450 DUFFERIN

₹

s\2214_450

2022-10-28 4:15:07 PM C:\Users\laura\Documents ISSUED FOR ZBA ON NOVEMBER 4, 2022

CLIENT	PROJECT ADDF	RESS		SHEET LIST	
HM RK (450 DUFFERN) LTD 474 WELLINGTON STREET, WEST TORONTO, ONTARIO MSV 1E3	450 DUFFENIN STREET TORONTO, ONTARIO MER 245			A 000 COVER SHEET & DRAWING LIST A 010 PROJECT STATISTICS A 020 GPA (LMGAWAS AS PERS 48-2013) A 031 PRESPECTIVE VEWS A 040 SHEMOCY STUDIES IMACH 21 A 041 SHEMOCY STUDIES MACH 21 A 042 SHADOX STUDIES IMACH 21 A 043 SHEMOCY STUDIES JUNE2 1	
CONSULTANTS	6			A 044 SHADOW STUDIES SEPTEMBER 21 A 045 SHADOW STUDIES SEPTEMBER 21 A 046 SHADOW STUDIES DECEMBER 21 A 046 SHADOW STUDIES DECEMBER 21	
ARCHITECT SUPERKULINC TORKYTO, ON, MRR 215 (T) 418,586,0700	STRUCTURAL ENGINEER NAME, TODORESS STRONTO, ON NOX XXX (T) 416,XXX,XXXX	LANDSCAPE ARCHITECT PMA LANDSCAPE ARCHITECTS TRACLANDSCAPE ARCHITECTS TORONTO, ON MOP 2K6 (1) 416,239,6916	GEOTECHNICAL ENGINEER TERNAFER ENMEMMENTAL LTD. GROWTO, KR RDA TOSOWTO, KR RDA	A 100 STEP 240 A 200 PF FLOOR FLAN A 201 PF FLOOR FLAN A 201 PF FLOOR FLAN A 202 GROUND FLOOR FLAN A 203 MEZZANNE FLOOR FLAN A 204 A 205 TVPL LEVEL 34 FLOOR FLAN A 205 TVPL LEVEL 34 FLOOR FLAN A 205 TVPL LEVEL 54 FLOOR FLAN A 205 TVPL LEVEL 54 FLOOR FLAN A 207 TVPL LEVEL 54 FLOOR FLAN A 207	
WECHANICAL ENGINEER SMI TH ANDERSEM TORONTO, ON MAKENE EAST TORONTO, ON MAKENE (T) 418,487,8151	ELECTRICAL ENGINEER MOTH + AUDERAVENUE EAST TORONOTO, ON UAXI NUE NOS (1) 416.487.8151	CMI ENGINEER RATAMERIKEN RASOCITES RATAMERIKEN RASOCITES TORONTO, ON MOJ 428 (1) 416,497,8800	CODE CONSULTANT VORTES TREE CONSULTING INC. TO CONTON AND AND AND AND AND AND AND TO CONTON AND AND AND AND AND AND AND (T) 418.551.8501	A 209 MPH FLOOK FLAM A 210 ROOF PLAM A 300 ELEVATION EAST A 300 ELEVATION EAST A 300 ELEVATION MEST A 300 ELEVATION MEST A 300 ELEVATION MEST A 401 NORTH-SOLITH BULLING SECTION A 401 STEF PLAM A 200 EAST ELEVATION A 200 EAST ELEVATION	
PLANNIG CONSULTANT URBAN STRATEOIES TORONTO, ON MET 208 (T) 416.340.3004	TRANSPORTATION CONSULTANT IN GROUD 49 57: CLAIR AVENUE WEST TORONTO, ON 1444 (1) 416,891,7110	WIND CONSULTANT OF VIENT MICE SIGNEEPING INC. OF VIENT MICE SIGNE CARP. ON KIN 110 (T) 613,836,0834	ACOUSTIC CONSULTANT Had ExoNetEnNo 2002/00 ACOUSTIN ROT TO TO 005.025.4944	A.202 WEST ELEVATION A.203 NORTH ELEVATION	
ENERGY CONSULTANT EG BULDING PERFORMANCE INC, 1500-25 JOLLIDO STREET EAST TORONTO. ON. MSC 3A1 (1) 446.465.1186					

				ZONING BY-L	AW PROJECT	STATISTICS					PROJECT STATISTIC SUMMARY		U	NIT BREAKDOW	/N (PER FLOOR)		TORONTO G
	GROSS CONS	TRUCTION	ZBL 569-	-2013		CITY W	IDE BY-LAW 569	-2013 GROSS	FLOOR AREA			امىدم (# of Bedrooms	Area	Level Ba	# of drooms Area	Sample and
	AREA	4	EXCLUS	IONS	GFA (RESI	IDENTIAL)	GFA (Com	mercial)	Amenity Floor Area	TOTAL GROSS FLOOR AREA	450 DUFFERIN STREET TORONTO, ONTARIO M6K 2A5	LEVEL 2	1 PD	66.4 m²	LEVEL 9		Anna Cross Rook and Contract an
Level P2	Area (m ²) 1371.7 m ²	Area (sq ft) 14765 ft ²	Area (m ²) / 1349.9 m ²	Area (sq ft) 14530 ft ²	Area (m ²) 21.8 m ²	Area (sq ft) 235 ft ²	Area (m ²)	Area (sq ft)	Area (m ²) Area (sq ft)	Area (m ²) Area (sq ft) 21.8 m ² 235 ft ²	ZONING DESIGNATION	LEVEL 2	1 BD	82.4 m ²	LEVEL 9 1 B	D 50.5 m ²	demandary 19296245
P1 GROUND LEVE	1371.8 m ²	14766 ft ² 14334 ft ²	1333.8 m ² 642.0 m ²	14357 ft ² 6910 ft ²	23.8 m ² 127.2 m ²	256 ft ² 1369 ft ²	14.2 m ² 562.5 m ²	153 ft² 6055 ft²		38.0 m ² 409 ft ² 689.7 m ² 7424 ft ²	ZBL 438-86 (EXISTING), ZBL 569-2013 (PROPOSED)	LEVEL 2	2 BD	85.7 m ²	LEVEL 9 1 BI	D 69.0 m ²	Committee and Address
MEZZANINE LEVEL 2	439.4 m ² 1226.2 m ²	4729 ft² 13199 ft²	86.1 m² 79.0 m²	927 ft² 850 ft²	1147.3 m²	12349 ft²	353.2 m²	3802 ft²		353.2 m ² 3802 ft ² 1147.3 m ² 12349 ft ²	EXISTING LOT AREA: 1495.0 m ² (16.092 sf)	LEVEL 2	2 BD 2 BD	70.3 m ²	LEVEL 9 2 BI	D 80.1 m ²	(minimality)
LEVEL 3 LEVEL 4	1226.2 m ² 1226.2 m ²	13199 ft² 13199 ft²	72.0 m ² 72.0 m ²	775 ft² 775 ft²	1154.2 m ² 1154.2 m ²	12424 ft ² 12424 ft ²				1154.2 m ² 12424 ft ² 1154.2 m ² 12424 ft ²		LEVEL 2	3 BD	94.2 m ² 95.4 m ²	LEVEL 9 STU	JDIO 44.0 m ² JDIO 42.2 m ²	find sortial if substantian one. NO
LEVEL 5 LEVEL 6	729.0 m ² 729.0 m ²	7847 ft² 7847 ft²	48.9 m ² 64.9 m ²	527 ft² 699 ft²	680.1 m ² 664.1 m ²	7320 ft ² 7148 ft ²				680.1 m ² 7320 ft ² 664.1 m ² 7148 ft ²	SITE FSI: 7.50	LEVEL 2	3 BD	107.1 m ²	LEVEL 9 STU	JDIO 39.5 m ² JDIO 37.6 m ²	Section 1 For Stand Alona Suring Bylaw Arro
LEVEL 7 LEVEL 8	729.0 m ² 729.0 m ²	7847 ft² 7847 ft²	64.9 m² 64.9 m²	699 ft² 699 ft²	664.1 m ² 664.1 m ²	7148 ft ² 7148 ft ²				664.1 m ² 7148 ft ² 664.1 m ² 7148 ft ²		LEVEL 2		99.7 11-	LEVEL 10		Aurope of Parking Socies.
LEVEL 9 LEVEL 10	729.0 m ² 729.0 m ²	7847 ft² 7847 ft²	64.9 m ² 64.9 m ²	699 ft ² 699 ft ²	664.1 m ² 664.1 m ²	7148 ft ² 7148 ft ²				664.1 m ² 7148 ft ² 664.1 m ² 7148 ft ²	# OF STORIES	LEVEL 3	1 BD	67.4 m ²	LEVEL 10 1 BI	D 50.5 m ²	Number of Dri Rolling (proces) (Headerson) Number of the Figure (Second (Headersonia)
LEVEL 11 LEVEL 12	729.0 m ² 729.0 m ²	7847 ft² 7847 ft²	64.9 m ² 64.9 m ²	699 ft² 699 ft²	664.1 m ² 664.1 m ²	7148 ft ² 7148 ft ²				664.1 m ² 7148 ft ² 664.1 m ² 7148 ft ²	(ABOVE GRADE): 15	LEVEL 3	2 BD	70.0 m ²	LEVEL 10 1 BI	D 69.0 m ²	Stand Memory
LEVEL 13 LEVEL 14	729.0 m ² 729.0 m ²	7847 ft ² 7847 ft ²	64.9 m² 64.9 m²	699 ft² 699 ft²	664.1 m ² 664.1 m ²	7148 ft ² 7148 ft ²				664.1 m ² 7148 ft ² 664.1 m ² 7148 ft ²	UNIT STATISTICS	LEVEL 3	2 BD	89.7 m ²	LEVEL 10 2 BI	D 80.1 m ²	Names of Degrammeryce posing grower (or Names of Degrammeryce) posing formed or
LEVEL 15 MPH	333.8 m ² 358.1 m ²	3593 ft² 3854 ft²	333.8 m² 358.1 m²	3593 ft ² 3854 ft ²					289.6 m ² 3117 ft ²		TOTAL RESIDENTIAL SUITES: 143	LEVEL 3	3 BD	94.5 m ²	LEVEL 10 STU	JDIO 42.2 m ²	of both and a second by
TOTAL	16175 . 1 m²	174108 ft ²	4960.0 m²	53389 ft²	10285.2 m²	110709 ft ²	929.9 m²	10010 ft ²	289.6 m ² 3117 ft ²	11215.1 m ² 120718 ft ²	SUITE BREAKDOWN:	LEVEL 3	3 BD	107.1 m ²	LEVEL 10 STU	JDIO 37.6 m ²	COMPANY AND A COMPANY
NOTES:											# OF AVERAGE AVERAGE AVERAGE (SM) (SE)	LEVEL 4	1 BD	66.4 m ²	LEVEL 11	D 51.5 m ²	at story and being prove
In the Residen (A) parking, loa	tial Apartment Zone ading and bicycle pa	category, the gr irkingbelow esta	oss floor area of blished grade;	f an apartment	building is redu	uced by the area	a in the building u	sed for:			STUDIO 50 35.0% 41.27 m² 444.2 m² 1 BD 46 32.2% 60.96 m² 656.1 m²	LEVEL 4	1 BD 2 BD	67.4 m ²	LEVEL 11 1 B	D 50.5 m ²	(comparing)
(B) required to (C) storage roo	ading spaces and re oms, washrooms, el	equired bicycle p ectrical, utility, m	arking spaces at echanical and v	t or above estat entilation room	b l ished grade; s in the basem	ent;					2 BD 32 22.4% 79.46 m ² 855.2 m ² 3 BD 15 10.5% 102.67 m ²	LEVEL 4	2 BD	70.0 m ²	LEVEL 11 1 B	D 69.0 m ²	Survey of sont last to can pair you my
(D) shower and (E) indoor ame	d change facilities re nity space required afts:	equired by this B by this By-law;	y-law for require	d bicycle parkin	ng spaces;						3 BD 13 10.3 % 102.01 m 1103.1 m	LEVEL 4	2 BD 2 BD	89.7 m ²	LEVEL 11 2 B	D 80.1 m ²	
(G) garbage sh (H) mechanica	ants; afts; penthouse; and											LEVEL 4	3 BD	94.5 m ²	LEVEL 11 STU	JDIO 42.2 m ²	Analytical and the APA of the and more rearrange
(I) exit stairwel	Is in the building.											LEVEL 4	3 BD	107.1 m ²	LEVEL 11 STU	JDIO 37.6 m ²	for more product pline for galary for more
											COMMERCIAL SPACE REQUIRED* PROVIDED	LEVEL 5	1 80	56.2 m²	LEVEL 12	D 51.5 m ²	
											897.2 9657.5 897.8 m ² 9664 ft ²	LEVEL 5	1 BD	50.5 m ² 67.2 m ²	LEVEL 12 1 BI	D 50.5 m ² D 67.4 m ²	
											NOTES: *Required commercial space @ 8% of GFA (m ² / ft ²). Provided Commercial space excludes Commercial Elevator Lobby.	LEVEL 5	2 BD	84.8 m ²	LEVEL 12 1 B	D 69.0 m ²	
											AMENITY SPACE	LEVEL 5	2 BD STUDIO	73.7 m ²	LEVEL 12 2 BI	D 80.1 m ²	
											REQUIRED AMENITY SPACE PER ZBL 569-2013 15 10 40 50 Decks, Platforms and Amenities	LEVEL 5	STUDIO	42.2 m ² 37.6 m ²	LEVEL 12 STU LEVEL 12 STU	JDIO 42.2 m ² JDIO 39.5 m ²	
											(1) Amenity Space for an Apartment BuildingIn the RA zone, an apartment building with 20 or more dwelling units must provide amenity space at a	LEVEL 5	STUDIO	39.7 m ² 43.0 m ²	LEVEL 12 STU LEVEL 12 STU	JDIO 37.6 m ² JDIO 43.1 m ²	
											minimum rate of 4.0 square metres for each dwelling unit, of which: (A) at least 2.0 square metres for each dwelling unit is indoor amenity consequented at a choice activitiened randor. (By Jaw 1262 2016)	LEVEL 6 LEVEL 6	1 BD	51.5 m²	LEVEL 13 LEVEL 13 1 BI	D 51.5 m ²	
											(B) at least 40.0 square metres is outdoor amenity space in a location	LEVEL 6 LEVEL 6	1 BD 1 BD	50.5 m ² 67.4 m ²	LEVEL 13 1 BI	D 50.5 m ² D 67.4 m ²	
											adjoining or directly accessible to the indoor amenity space; and	LEVEL 6 LEVEL 6	1 BD 2 BD	69.0 m ² 80.1 m ²	LEVEL 13 1 BI LEVEL 13 2 BI	D 69.0 m ² D 80.1 m ²	
												LEVEL 6 LEVEL 6	2 BD STUDIO	80.1 m ² 44.0 m ²	LEVEL 13 2 BI LEVEL 13 STU	D 80.1 m ² JDIO 44.0 m ²	
											INDOOR AMENITY SPACE 286 m ² 3079 ft ² 289.6 m ² 3117 ft ²	LEVEL 6 LEVEL 6	STUDIO STUDIO	42.2 m ² 39.5 m ²	LEVEL 13 STU LEVEL 13 STU	JDIO 42.2 m ² JDIO 39.5 m ²	
											OUTDOOR AMENITY SPACE 286 m² 3079 ft² 286.5 m² 3084 ft² PARKING SPACE 286 m² 3079 ft² 286.5 m² 3084 ft²	LEVEL 6 LEVEL 6	STUDIO STUDIO	37.6 m ² 43.1 m ²	LEVEL 13 STU LEVEL 13 STU	JDIO 37.6 m ² JDIO 43.1 m ²	
											PROVIDED	LEVEL 7 LEVEL 7	1 BD	51.5 m²	LEVEL 14 LEVEL 14 1 BI	D 51.5 m ²	
											Rate Spaces RESIDENTIAL PARKING 0.16/unit 22	LEVEL 7 LEVEL 7	1 BD 1 BD	50.5 m ² 67.4 m ²	LEVEL 14 1 BI LEVEL 14 1 BI	D 50.5 m ² D 67.4 m ²	
											VISITOR (RESIDENTIAL) PARKING 0.09/unit 12 COMMERCIAL PARKING** 0 0	LEVEL 7 LEVEL 7	1 BD 2 BD	69.0 m ² 80.1 m ²	LEVEL 14 1 BI LEVEL 14 2 BI	D 69.0 m ² D 80.1 m ²	
											TOTAL 34	LEVEL 7 LEVEL 7	2 BD STUDIO	80.1 m ² 44.0 m ²	LEVEL 14 2 BI LEVEL 14 STU	D 80.1 m ² JDIO 44.0 m ²	
											NOTES: * of 35 parking spots provided 6 will be BF.	LEVEL 7 LEVEL 7	STUDIO STUDIO	42.2 m² 39.5 m²	LEVEL 14 STU LEVEL 14 STU	JDIO 42.2 m ² JDIO 39.5 m ²	
											** No exclusive commercial parking but will be shared with visitor (residential) parking	LEVEL 7 LEVEL 7	STUDIO	37.6 m ² 43.1 m ²	LEVEL 14 STU LEVEL 14 STU	JDIO 37.6 m ² JDIO 43.1 m ²	
											parking spaces (3 spaces) to include an energized outlet capable of providing level 2 charging or higher to the parking space.	LEVEL 8 LEVEL 8	1 BD	51.5 m²			
												LEVEL 8 LEVEL 8	1 BD 1 BD	50.5 m² 67.4 m²			
											BIKE PARKING SPACES	LEVEL 8	1 BD 2 BD	69.0 m ² 80.1 m ²			
											REQUIRED PROVIDED	LEVEL 8	2 BD STUDIO	80.1 m ² 44.0 m ²			
											Rate Spaces Rate Spaces SHORT TERM BIKE PARKING 0.2/unit 29 0.2/unit 29	LEVEL 8	STUDIO	42.2 m ² 39.5 m ²			
											LONG TERM BIKE PARKING 0.9/unit 129 0.9/unit 129 TOTAL 158 158	LEVEL 8	STUDIO	43.1 m ²			
											NOTES						
											 As per the new Toronto Green Standard V4.0, 15% of the residential long- term spaces must be electric spaces. 20 of the Long Term spaces are electric brough accession. Back Reserved. 						
											 Assumes double decker bike rack system for all non-electric bikes. 						
											STORAGE LOCKERS						
											PROVIDED						
											Rate Spaces STORAGE LOCKERS 1.0/unit 143						
											TOTAL 143						
											<u>1 - IYPE "G"</u>						
L											1						1

Σ 4QW8

		DOI 01		Copyright reserved. This design and drawings are the exclusive property of superkul inc. (the Architect) and cannot be used for any purpose without the written
ORONIO GREEN SI	NINDARD (VEI	NOI (10 4.0)		consent of the Architect. This drawing is not to be used for construction until issued for that purpose by the Architect.
HORALMA-				Prior to commencement of the Work the Contractor shall verify all drawing dimensions, datums, and levels with the Contract Documents and with the conditions on site; ascertain any discrepancies between the site and the
1924249				Contract Documents, and bring these items to the attention of the Architect for clarification
-				superk
- 14				101 - 35 Golden Avenue Toronto, ON M6R 2J5
loring Bytes Ameridment Ap	disting and 2	te Pain Carles	a Apple allors	t> 416.596.0700 f> 416.533.6986 www.superkul.ca
	-	14°		
(magenda)	1	7	100	
	-	1	-	
howing showed go.	-	1		
-		1		
grant				
			-	
production (second second s		-	1 2	
	-	-		
a se an red	arises .	man	-	
a degree property (ed.)		144		
				1 202,11,04 ISSUED FOR ZBA No. Date Issue/Revision
				450 DUFFERIN 450 DUFFERIN STREET TORONTO, ON, M6K 2A5 Trile: PROJECT STATISTICS

B GFA DIAGRAM- TYP, LEVEL 8-14 1:250

GFA DIAGRAM- LEVEL 5
 1:250

9 GFA DIAGRAM- LEVEL 15 1:250

A EXCLUSIONS PER ZBL 569 2013 (LEVEL 3-4)

2022-10-28 4:16:54 PM C:\Users\laura\Documents\2214_450

₹

2022-10-28 4:16:59 PM C:\Users\laura\Documents\2214_450 Dufferin_new_laura.

ts\2214_450 2022-10-28 4:17:00 PM C:\Users\laura\Documents

₹

2600 1000 MAX TYPICAL PARKING SPACE PARKING LEGEND RES RESIDENTIAL COM COMMERCIAL VIS VISITOR NOTE

ts\2214_450 2022-10-28 4:17:01 PM C:\Users\laura\Documents

₹

2600 1000 MAX TYPICAL PARKING SPACE PARKING LEGEND RES RESIDENTIAL COM COMMERCIAL VIS VISITOR

2022-10-28 4:17:02 PM C:\Users\laura\Documents\2214_450 Dufferin_new_lauraJ4QW

₹

2022-10-28 4:17:02 PM C:\Users\aura\Documents\2214_450 Dufferin_new_laura\4QW

Σ

Σ

ALMA AVENUE

2022-10-28 4:19:05 PM C:\Users\laura\Documents\2214_450 Dufferin_new_lauraJ4QW8

2022-10-28 4:20:58 PM C:\Users\laura\Documents\2214_450 Dufferin_new_lauraJ4Q

₹

2022-10-28 4:21:51 PM C:\Users\laura\Documents\2214_450 Dufferin_new_lauraJ4QWf

2022-10-28 4:22:59 PM C:\Users\aura\Documents\2214_450 Dufferin_new_lauraJ4QM8.Nt

Copyright reserved. This design and drawings are the exclusive property of superkul inc. (the Architect) and cannot be used for any purpose without the written
Consent of the Architect. This drawing is not to be used for construction until issued for that purpose by the Architect. Prior to commencement of the Work the Contractor shall
verify all drawing dimensions, datums, and levels with the Contract Documents and with the conditions on site; ascertain any discrepancies between the site and the Contract Documents, and bring these items to the
superk"
101 - 35 Golden Avenue Toronto, ON M6R 2J5 t> 416 596 0700
f>416.533.6986 www.superkul.ca
PC-1 PRECAST (SANDELAST FINISH) STL-1 PREFIN STEEL CLADDING SYSTEM (GREY)
GL-2 GL-2 TINTED GLASS (LIGHT GREY)
LV-1 LOUVRES (GREY) G-1
GUARDRAIL 1 (CLEAR GLASS)
G-3 GUARDRAIL 3 (JULIET, METAL IN DARK GREY)
TYP. BIRD FRIENDLY FRIT PATTERN
WHITE CERAMIC FRIT - MIN: 5MM DIA.
+ • • • •
NOTES: 1) ALL EXTERIOR LIGHT FIXTURES WILL BE DARK SKY COMPLIANT, DIRECTED DOWNWARD, AND DESIGNED TO
PREVENT GLARE AND LIGHT TRESPASS ONTO NEIGHBOURING PROPERTIES
1 2022.11.04 ISSUED FOR ZBA
No. Date Issue/Revision
450 DUFFERIN STREET TORONTO, ON, M6K 2A5
Title:
ELEVATION - NORTH
Project No. 2214 Scale As indicated

2022-10-28 4:23:03 PM C:\Users\laura\Documents\2214_450 Dufferin_new_lauraJ4QW

<u>27800</u> <u>10.PEM³HOUSE</u>		MECHANICAL PENTHOUSE
<u> Сэлий мен </u>		
20000 LEVEL 16		Suffes Suffes
		suttes suttes
		SUITES SUITES
		SUITES SUITES
		sures sures
20000 LEVEL 8		SUITES SUITES
<u> /2000</u> UKUL7	MA AVENUE	SultES SulTES
	AL	SUITES SUITES
		sutres Lockers sutres
<u>/1000 LEVEL3</u>		SUITES LOCKERS SUITES
2000 LEVEL 2		SUITES LOCKERS SUITES
<u> 1990</u> MEZZZANÓNE		LOBY LOADING COMMERCIAL COMMERCIAL COMMERCIAL
		BIKE ROOM DRIVE AISLE
27182 P2		PARKING LOW HEADROOM BLOW PARKING RAMP

2022-10-28 4:23:08 PM C:\Users\laura\Documents\2214_450 Dufferin_new_lauraJ4QW8.nt

APPENDIX B

Water Demand Analysis

		TOTAL
1.1 Total Townhouse Units	units	0
1.2 Persons Per Unit*	persons/unit	2.7
1.3 Total One-Bedroom or One Bedroom + Den Units	units	96
1.4 Persons Per Unit*	persons/unit	1.4
1.5 Total Two Bedroom Units	units	35
1.6 Persons Per Unit*	persons/unit	2.1
1.7 Total Three Bedroom Units	units	12
1.8 Persons Per Unit*	persons/unit	3.1
1.9 Total Residential Population	persons	245
1.10 Total Population Used for Calculation Purposes**	persons	260
1.11 Per Capita Demand @ 190 L/person/day	L/day	49,400
1.12 Equivalent Population Demand	L/s	0.57
1.13 Peak Hour Peaking Factor*		2.5
1.14 Peak Hour Design Demand Rate	L/s	1.43
1.15 Peak Hour Design Demand Rate (m ³ /day)	m³/day	124
1.16 Maximum Day Peaking Factor*		1.3
1.17 Maximum Day Design Demand Rate	L/s	0.74
1.18 Maximum Day Design Demand Rate (m ³ /day)	m ³ /day	64

TABLE B1 - PROPOSED PEAK WATER DEMAND CALCULATIONS - RESIDENTIAL

* as per City of Toronto Design Criteria for Sewers and Watermains - Nov. 2009

TABLE B2 - PROPOSED PEAK WATER DEMAND CALCULATIONS - COMMERCIAL

BUILDING A

		TOTAL
2.1 Total Net Retail Floor Area	m²	882
2.2 Persons Per 100m ² *	persons/100m ²	1.1
2.3 Total Population	persons	10
2.4 Per Capita Demand @ 190 L/person/day	L/day	1,843
2.5 Equivalent Population Demand	L/s	0.02
2.6 Peak Hour Peaking Factor*		1.2
2.7 Peak Hour Design Demand Rate	L/s	0.03
2.8 Peak Hour Design Demand Rate (m ³ /day)	m³/day	2
2.9 Maximum Day Peaking Factor*		1.1
2.10 Maximum Day Design Demand Rate	L/s	0.02
2.11 Maximum Day Design Demand Rate (m ³ /day)	m ³ /day	2

* as per City of Toronto Design Criteria for Sewers and Watermains - Jan 2021

TABLE B3 - PROPOSED PEAK WATER DEMAND CALCULATIONS - DOMESTIC + COMMERCIAL

BUILDING A

		AVERAGE DEMAND	PEAK HOUR	MAXIMUM DAY
3.1 Residential Demand	L/s	0.57	1.43	0.74
3.2 Commerical Demand	L/s	0.02	0.03	0.02
3.3. Total Flow Rate	L/s	0.59	1.45	0.77
3.4 Total Flow Rate	L/min	36	87	46

			TOTAL
4.1	Coefficient for type of construction:		0.6*
4.2	Height in Stories		14
4.3	2nd Floor Area	m²	1,179
4.4	3rd Floor Area (Largest Floor Area)	m²	1,179
4.5	4th Floor Area	m²	1,179
4.6	Stories to Use in Calculation (1 + 25% of each of the two floors immediately adjoining the largest floor)		1 + 2 * 25%
4.7	Total Area **	m²	1,769
4.8	Fire Flow Required	L/min	6,000
4.9	25% Reduction for Occupancy Charge - low fire hazard	L/min	-1,500
4.10	Fire Flow Required	L/min	4,500
4.11	30% Reduction for NFPA13 Comforming Sprinkler System	L/min	-1,350
4.12	Charge for Building Separation North: Nearest Building West: Nearest Building South: Nearest Building East: Nearest Building	4.5 8.5 12.5 18.5	20% 20% 15% 15%
4.13	Charge for Building Separation	L/min	3,150
4.14	Fire Flow Required	L/min	7,000
4.15	Fire Flow Required	L/s	116.7

TABLE B4 - FIRE DEMAND CALCULATIONS - BASED ON F.U.S. GUIDELINES

*Based on ISO class of construction "Modified Fire Resistive". Refer to Technical Bulletin ISTB-2018-02 Revisions to Ottawa Design Guidelines - Water Distribution dated March 21st, 2018

**As per FUS Guidelines, assuming the vertical openings and exterior vertical communications are properly protected (1 hr rating), consider only the area of the largest floor plus 25% of each of the 2 immediately adjoining floors.

TABLE B5 - PROPOSED REDEVELOPMENT TOTAL WATER DEMAND

PER CITY OF TORONTO DESIGN CRITERIA AND MOE DESIGN GUIDELINES, WATER SUPPLY SYSTEMS SHOULD BE DESIGNED TO SATISFY <u>THE GREATER</u> OF EITHER OF THE FOLLOWING DEMANDS:

-MAXIMUM DAY DOMESTIC DEMAND PLUS FIRE FLOW

-PEAK HOUR DOMESTIC DEMAND

BUILDING A MAX DAY & FIRE FLOWS

MAX DAY	0.77 L/S
FIRE	116.67 L/s
Total Max Day & Fire Flow	117.43 L/s

PEAK HOUR DOMESTIC DEMAND

1.45 L/s

THEREFORE, MAX DAY + FIRE FLOW IS GOVERNING REQUIREMENT

WATER DEMAND

Max Day Demand	0.77 L/s	46 L/min
Fire Flow*	116.7 L/s	7,000 L/min
Total Water Demand Requirement	117.4 L/s	7,046 L/min

Note (*): Per City of Toronto's Design Criteria for Sewers and Watermains, in accordance with the Fire Underwriters Survey (FUS), fire flows will not be less than 4,800L/minute for a 2-hour duration in addition to maximum daily domestic demand, delivered with a residual pressure of not less than 140kPa (20psi).

Hydrant #				HY1361207	a r	va	2001 Sheppard Ave	E, North York,	ON M2J 4Z8	
NFPA Colour C	ode			BLUE						
Client										
Customer Info										
Location				480 E	Dufferin	St., Toro	nto, ON			
Date					27-3	Sep-22	-			
Time					10:	:00AM				
Wartermain Dia.					30	0mm				
						•••••				
RESIDUAL HYDI	RANT IN	FO.			F	LOW HYDRA	NT(S) INFO.			
HYDRANT #	HY13	61207	Test # Hydrant # # of Ports Flowed OUTLET Dia (inches) FM or Diffuser type Nozzle coeff Pitot Reading				Discharge flow (USGPM)			
N.F.P.A. COLOUR CODE	BLUE		1	HY1362402	2	2.5	SWIVEL BELL	0.90	22.0	1309.9
			2							
STATIC PRESSURE	64.2	psi	3							
RESIDUAL PRESSURE	61.1	psi	4				Tot			1210
PRESSURE DROP	31	nsi					101		- 101)	1310
% PRESSURE DROP	4.8	% of psi								
Flow At Test Hydrant at 20 psi	5501	USGPM								
	80			Pressu	re - Flow Grap	h				
(IS	60									
e (F										
sur	40									
res										
L	20							~		
	0		1000	2000	3000	4000	5000			
	0		1000	2000	w Data (USCD	4000	0000	0000		
				FIO	w Rate (USGP	IVI)				
		CO	MMENTS			Fit Fit C C Pre Tt Pum	eld Tech 1 eld Tech 2 operator 1 operator 2 ssure Zone owe Level ps(ON/OFF)		G. Manigbas n/a Paul n/a ft ft	
						<u> </u>				

APPENDIX C

Sanitary Demand Analysis

BUILDING A				
			TOTAL	
1.1	Total Townhouse Units	units	0	
1.2	Persons Per Unit*	persons/unit	2.7	
1.3	Total Studio and One Bedroom/One Bedroom + Den Units	units	96	
1.4	Persons Per Unit*	persons/unit	1.4	
1.5	Total Two Bedroom Units	units	35	
1.6	Persons Per Unit*	persons/unit	2.1	
1.7	Total Three Bedroom Units	units	12	
1.8	Persons Per Unit*	persons/unit	3.1	
1.9	Total Residential Population	persons	245	
1.10	Total Population Used for Calculation Purposes	persons	260	
1.11	Total Residential Flow @ 450 L/capita/day*	L/day	117,000	
1.12	Total Residential Flow	L/s	1.35	
1.13	Peaking Factor**		4.10	
1.14	Total Residential Peak Flow @ 450 L/capita/day	L/s	5.56	

TABLE D1 -	PROPOSED TOTA	I SANITARY FLO	OW ESTIMATE -	RESIDENTIAL
				REGIDERIAL

* as per City of Toronto Design Criteria for Sewers and Watermains - Jan 2021 ** Peaking Factor calculated by using Harmon's Formula (1+ 14/(4 + P^0.5)).

			Total
2.1	Total Net Commercial Floor Area	m²	882
2.2	Total Commercial Average Flow @ 180,000L/floor ha/day	L/day	15868.80
2.6	Total Commercial Peak Flow	L/s	0.18

TABLE D2 - PROPOSED TOTAL SANITARY FLOW ESTIMATE - COMMERCIAL

 * as per City of Toronto Design Criteria for Sewers and Watermains - Jan 2021

3.1	Site Area	m²	1495
3.2	Site Area	ha	0.1495
3.3	Infiltration Allowance**	L/s/ha	0.26
3.4	Total Infiltration Peak Flow	L/s	0.04

TABLE D3 - PROPOSED TOTAL SANITARY FLOW ESTIMATE - INFILTRATION

* Entire Site Area

 ** as per City of Toronto Design Criteria for Sewers and Watermains - Jan 2021

	TOTAL		
4.1	Total Residential Peak Flow @ 450 L/capita/day	L/s	5.56
4.2	Total Commercial Peak Flow	L/s	0.18
4.3	Total Infiltration Peak Flow	L/s	0.04
4.4	Total Sanitary Peak Flow	L/s	5.78

TABLE D4 - PROPOSED TOTAL SANITARY FLOW ESTIMATE - SUMMARY

			Total
5.1	Total Existing Site Area*	m²	1495
5.2	Total Existing Site Area	ha	0.1495
5.3	Total Population @ 1.1 persons/100m ² for Commerical**	persons	16.45
5.4	Total Commerical Flow @ 250 L/capita/day	L/day	4111.3
5.5	Total Commerical Peak Flow	L/s	0.05

TABLE D5 - EXISTING TOTAL SANITARY FLOW ESTIMATE - COMMERICAL

* Entire Site Area

** as per City of Toronto Design Criteria for Sewers and Watermains - Nov.2009.

			Total
6.1	Total Existing Sanitary Peak Flow	L/s	0.05
6.2	Total Redevelopment Sanitary Peak Flow @ 450 L/capita/day	L/s	5.78
6.3	Total Net Sanitary Peak Flow Increase	L/s	5.73

TABLE D6 - PROPOSED REDEVELOPMENT TOTAL NET SANITARY INCREASE (450 L/c/d)

APPENDIX D

Post-Development Peak Discharge Rate and Required Storage

City of Toronto Stormwater Management Site Detention and Retention Requirements

Project:	450 Dufferin		
Date:	October 7, 2022		

Site Area (ha) =	0.1495
Pre Dev. Runoff Coeficeint =	0.9
Post Dev.Runoff Coefficient =	0.9
Max. Allowed Runoff Coefficeint =	0.5

Total Allowed Peak Discharge Rate from Site				
$Q = \frac{CIA}{360} * 1000$)			
C = 0.5				
I = 88.19	mm/hr			
Q Allowed =	18.3 L/s			
Q 100 =	93.6 L/s			

Uncontrolled Peak Discharge Rate from Easement Area (ha) = 0.0066 C = 0.25 I (mm/hr) = 250.32 Q 100 = 1.1 L/s

Allowable Peak Flow from Development (Controlled) Q_{allowed} - Q_{easement} = 17.2 L/s

Estimated On-Site Retention For Water Balance	
Assume hard surface IA =	1 mm
Assume Soft Surface IA =	5 mm
Target Retention (mm) =	5 mm
Total Retention Volume Required =	7.5 cu.m
Estimated % Impervious =	100.0%
Estmated Surface IA Provided = Estimated Deficit for Infiltration	1.00 mm
Or Rainwater Harvesting =	4.00 mm
or	5.7 cu.m

On Site Deter	tion Storage					
100 Yr Storm	Event					
Post Development Dunoff Coofficient =						
Post Develop	ment Runoff Co	efficeint =	0.9			
Site Area (na) = 	- (-) -	0.1495			
Allowed Real	ease Rate (cu.n	n/s) =	0.017			
Peak Storage	e + 30% Allowar	$(m_3) =$	60.000			
t,	İ100	Q ₁₀₀	Qatorod	Peak Volume		
(min)	(mm/hr)	(m^{3}/s)	(m ³ /s)	(m ³)		
1	1579.412	0.590	0.573	34.388		
2	907.134	0.339	0.322	38.625		
3	655.841	0.245	0.228	41.032		
4	521.012	0.195	0.178	42.615		
5	435.832	0.163	0.146	43.718		
6	376.682	0.141	0.124	44.503		
8	200 2/3	0.124	0.107	45.000		
9	272 334	0.112	0.035	45 695		
10	250.320	0.094	0.076	45.836		
11	231.943	0.087	0.070	45.886		
12	216.347	0.081	0.064	45.861		
13	202.927	0.076	0.059	45.770		
14	191.246	0.071	0.054	45.624		
15	180.977	0.068	0.050	45.428		
16	171.870	0.064	0.047	45.189		
17	163.733	0.061	0.044	44.912		
18	156.415	0.058	0.041	44.599		
19	149.793	0.056	0.039	44.256		
20	143.771	0.054	0.037	43.884		
21	138.267	0.052	0.035	43.487		
22	100.210	0.050	0.033	43.000		
23	120.002	0.046	0.031	42.023		
25	120.266	0.045	0.023	41 678		
26	116.551	0.044	0.026	41.179		
27	113.085	0.042	0.025	40.664		
28	109.842	0.041	0.024	40.134		
29	106.801	0.040	0.023	39.590		
30	103.944	0.039	0.022	39.033		
31	101.253	0.038	0.021	38.463		
32	98.713	0.037	0.020	37.881		
33	96.313	0.036	0.019	37.289		
34	94.040	0.035	0.018	36.686		
35	91.884	0.034	0.017	36.073		
36	89.837	0.034	0.016	35.450		
38	86 034	0.032	0.010	34 179		
39	84.264	0.031	0.014	33.531		
40	82.575	0.031	0.014	32.876		
41	80.960	0.030	0.013	32.212		
42	79.414	0.030	0.013	31.542		
43	77.933	0.029	0.012	30.865		
44	76.513	0.029	0.011	30.182		
45	75.149	0.028	0.011	29.492		
46	73.840	0.028	0.010	28.796		
47	1∠.08U 71.368	0.027	0.010	20.095		
40	70.200	0.027	0.010	21.307		
50	69.075	0.026	0.009	25.073		

May 2021

Storm Event Modelling - Storage System Characteristics

Table D1 - Primary Detention Tank

Storage System Discharge Details				
Orifice Coefficient	$Q=C_dA(2g(h_2-h_1))^{0.5}$			
Orifice Coefficient	0.62			
Orifice Diameter (mm)	68.00			
Orifice Area (m ²)	0.004			

Elevation	Storage Depth	Orifice Head	Storage	Orifice Discharge	Notes
(m)	(m)	(m)	(m³)	(L/s)	
90.94	0.00	0.00	0.0	0.0	
91.24	0.30	0.20	4.1	4.5	
91.44	0.50	0.50	10.3	7.1	
92.94	2.00	2.00	41.0	14.1	
93.89	2.95	2.95	60.5	17.1	Top of Tank

APPENDIX E

Conceptual Servicing Plan

INFORMATION PROVIDED BY R.AVIS. LTD. TOPOGRAPHIC SURVEY PERFORMED JULY 29, 2020

HCM No. 02219740641 N 4833996.893 E 310437.797

MANAGER, DEVELOPMENT ENGINEERING

				~4
	WATERLOO AVENUE	ALMA AVENUE	LADSTONE AVENUE	
/	ALMA AVEN	- SITE	/	WEIGHT ON
	REVISIONS		KEY PLAN N.T.S.	
	No. Revision 1. 2022-10-	-14	Comments ISSUED FOR ZBA	DRAFT
			EGEND	
		LE PROPOSE PROPOSE PROPOSE PROPOSE PROPOS PROPOS PROPOS PROPOS PROPOS PROPOS PROPOS	EGEND ED PROPERTY LI ED WATERMAIN ED SEWER AND ED WATER METER ED ACCESS OPE CH DWOS FOR L ED GAS METER ED VALVE & BO SED BUILDING AT SED BUILDING RO ROTECTION HOAN SED CATCH BASI	NE FLOW DIRECTION R & DOUBLE CHECK RT T-1107.04-1 VETAILS) SSEMBLY SETAILS) X X SSIBLE AT GRADE SSIBLE AT GRADE) S STRUCTURE GRADE N/AREA DRAIN N/AREA DRAIN
	2022- RVA 208	11.04 5396.01 By:		
	R.V.			a hited ucture
	Client:	K (450) DUFFER	IN) LTD.
	Project Name: 45 0	0 DUF	FERIN ST	REET
	urawing Title:	CON SERV	ICEPTUA	L AN
G & CONSTRUCTION SERVICES CITY OF TORONTO STANDARDS. D AS VERIFICATION OF ENGINEERING	Drawn: A.W. Checked: A.S.T. CADD File:	Apprv.	A.W. A.W. A.S.T.	Date: OCT 14, 2022 Scale: 1:150 Dwg. No.:
DATE	GS-1 SERVICIN Project No.:	G PLAN.dv 205396.0	wg	GS-1

R: \2020\205396 - Hullmark-450-Dufferin \Q CADD - Urban \04 Sheets \GS-1 SERVICING PLAN.dwg

APPENDIX F

Reference Documents

HYDROLOGICAL REVIEW SUMMARY

The form is to be completed by the Professional that prepared the Hydrological Review. Use of the form by the City of Toronto is not to be construed as verification of engineering/hydrological content.

Refer to the Terms of Reference, Hydrological Review: Link to Terms of Reference Hydrological Review

For City Staff Use Only:	
Name of ECS Case Manager (Please	
print)	
Date Review Summary provided to	
to TW, EM&P	

IF ANY OF THE REQUIREMENTS LISTED BELOW HAVE NOT BEEN INLCUDED IN THE HYDROLOGICAL REVIEW, THE REVIEW WILL BE CONSIDERED INCOMPLETE.

THE GREY SHADED BOXES WILL REQUIRE A CONSISTANCY CHECK BY THE ECS CASE MANAGER.

Summary of Key Information:

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
Site Address	450 Dufferin Street	S.1-pg.1.	
Postal Code	M6K 2A5	S.2.1-pg.1.	
Property Owner (on request for comments memo)	HM RK (450 Dufferin) LP	S.1-pg.1.	
Proposed description of the project (if applicable) (point towers, number of podiums)	Fifteen stories building with two underground parking levels	S.2.3-pg.1.	
Land Use (ex. commercial, residential, mixed, institutional, industrial)	Residential with commercial	S.2.3-pg.1.	
Number of below grade levels for the proposed structure	Two (2)	S.2.3-pg.1.	
HYDROLOGI	CAL REVIEW INFORMATION		
Date Hydrological Review was prepared:	3 November 2022	Cover page	
Who Performed the Hydrological Review (Consulting Firm)	Terrapex Environmental Ltd.	Cover page, S.1-pg.1.	
Name of Author of Hydrological Review	Brian D. Theimer, Andrew Durbano	S.8-pg.12	

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
Check the directories on the website for Professional Geoscientists and/or Professional Engineers of Ontario been checked to ensure that the Hydrological Report has been prepared by a qualified person who is a licensed Professional Geoscientist as set out in the Professional Geoscientist Act of Ontario or a Professional Engineer? PEO: <u>Professional Engineers of Ontario</u> APGO: <u>Association of Professional Geoscientists of Ontario</u>	Both are Professional Geoscientists	N/A	
 Has the Hydrological Review been prepared in accordance with all the following: Ontario Water Resources Act Ontario Regulation 387/04 Toronto Municipal Code Chapter 681-Sewers 	Yes.	S.1-pg.1.	
		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
Total Volume (L/day) Short Term Discharge of groundwater (construction dewatering) with safety factor included	16,800 L/day What safety factor was used? 2.0	S.6.1-pg.9.	
Total Volume (L/day) Short Term Discharge of groundwater (construction dewatering) without safety factor included	8,400 L/day	S.6.1-pg.9.	
Total Volume (L/day) Long Term drainage of groundwater (from foundation drainage, weeping tiles, sub slab drainage) with safety factor included If the development is part of a multiple tower complex, include total volume for each separate tower	Zero (0) L/day. Building garage will be water-tight. What safety factor was used? Not applicable to zero drainage.	S.6.1-pg.10.	
List the nearest surface water (river, creek, lake)	Lake Ontario is 1.5 km away	S2.5-pg.2.	

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
Lowest basement elevation	Walking floor / driving surface of P2 garage = 87.1	S.5.4pg.8	
Foundation elevation	Bottom of excavation = 84.2 masl	S.5.4pg.8	
Ground elevation	Planned ground floor elevation = 94.1 masl	S.2.4-pg.2.	
STUDY AREA MAP		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)
Study area map(s) have been included in the report.	Yes	Appendix I, Figures 1, 2, 3 and 4	N/A
Study area map(s) been prepared according to the Hydrological Review Terms of Reference.	res	Appendix I, Figures 2, 3 and 4	N/A
WATER LEVEL AND WELLS		Page # & Section # of every occurrence	Review Includes this Information (City Staff Initial)

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
		in the Review	
The groundwater level has been monitored using all wells located on site (within property boundary).	Yes	S.3.3-pg.4; S.4.2-pg.6.	
The static water level measurements have been monitored at all monitoring wells for a minimum of 3 months with samples taken every 2 weeks for a minimum of 6 samples.	No. Three events obtained. Foundation Drainage Policy Guidelines of City of Toronto, under Option 1 (Flexible, Year-round) requires a minimum 3 events.	Appendix II, Table 2	
The intent is for the qualified professional to use professional judgement to estimate the seasonally high groundwater level.			
All water levels in the wells have been measured with respect to masl.	Yes.	S.4.2-pg.6.; Appendix II, Table 2	
A table of geology/soil stratigraphy for the property has been included.	Yes.	Appendix II, Table 5	
GEOLOGY AND PHYSICAL HYDROLOGY		Page # & Section # of every occurrence in the Review	Review Includes this Information (City Staff Initial)
The review has made reference to the soil materials including thickness, composition and texture, and bedrock environments.	Yes.	S.4.1-pg 5. Appendix II, Table 5	
Key aquifers and the site's proximity to nearby surface water has been identified.	۲es	S2.5pg2.; S2.8pg.2.	N/A

SITE INFORMATION		Page # & Section # of Review	Review Includes this Information City Staff (Check)
PUMP TEST/SLUG TEST/DRAWDOWN ANALYSIS		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)
A summary of the pumping test data and analysis is included in the review.	No pumping test due to lower permeability soils and deep water table.		
The pump test been carried out for at least 24 hours if possible. If not, has a slug test been conducted?	No pumping test. Slug tests were carried out in wells with sufficient water.	S.3.5-pg.4; S.5.1-pg.7.	
Have the monitoring well(s) have been monitored using digital devices? If yes how frequently?	Yes. During slug tests meassured at 30 seconds intervals.	S.3.5-pg.4	
If a slug or pump test has been conducted has the static groundwater level been monitored at all monitoring well(s) multiple times to measure recovery? -prior to the slug or pumping test(s)? -post slug or pumping test(s)?	ſes	Not appplicable	N/A
The above noted slug or pump tests have been included in the report.	ſes	S.3.5-pg.4; S.5.1-pg.7. Appendix IV.	
WATER QUALITY		Page # & Section # of every occurrence in the Review	Review Includes this Information City Staff (Check)

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
The report includes baseline water quality samples from a laboratory. The water quality must be analyzed for all parameters listed in Tables 1 and 2 of Chapter 681 Sewers of the Toronto Municipal Code (found in Appendix A) and the samples must have to be taken unfiltered within 9 months of the date of submission.	Yes	S.3.4-pg.4; S.5.3-pg.8.	
The water quality data templates in Appendix A have been completed for each sample taken for both sanitary/combined and storm sewer limits.	For sanitary discharge- See the sanitary/combined sewer parameter limit template Included For storm discharge- See the storm sewer parameter limit template Included.	See also Appendix II, Table 3.	
Qualified professional to list all sample parameters that have violated the Bylaw limits for each sample taken for the sanitary/combined Bylaw limits If there are any sample parameter Exceedances the groundwater can't be discharged as is.	No parameter exceeded the sanitary / combined bylaw limits.	S.6.3-pg.10.	
Qualified professional to list all sample parameters that have violated the Bylaw limits for each sample taken for the storm Bylaw limits. If there are any sample parameter exceedances the groundwater can't be discharged as is.	Manganese was 0.12 mg/L in comparison to storm bylaw of 0.05 mg/L.	S.6.3-pg.10.	
The water quality samples have been analyzed by a Canadian laboratory accredited and licensed by Standards Council of Canada and/or Canadian Association for Laboratory Accreditation.	ſes	S.3.4-pg.4.	N/A

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
List of Canadian accredited laboratories:	ALS Laboratory Ltd.	S.3.4-pg4.	
Standards Council of Canada			
A chain of custody record for the samples is	N	Appendix VI	
included with the report.	Yes.		
Has the chain of custody reference any filtered	No.		
re-submitted to include only non-filtered samples.			
List any of the sample parameters that exceed the Bylaw limits with the reporting detection limit (RDL) included.	Manganese was 0.12 mg/L in comparison to storm bylaw of 0.05 mg/L.	S.6.3-pg.10.	
A true copy of the Certificate of Analysis report, is included with the report.	Yes	Appendix VI	
EVALUATION OF IMPACT		Page # &	Review
		Section # of	Includes this
		occurrence	City Staff
		in the Review	(Check)
Does the report recommend a back-up system or relief safety valve(s)?	res No		
Does the associated Geotechnical report recommend a back-up system or relief safety	Yes No		
valve(s)?	These reports do not discuss back-up systems or relief safety valve(s)		
The taking and discharging of groundwater on site has been analyzed to ensure that no negative	● Yes	S.6.2. pg.10.	N/A

HYDROLOGICAL REVIEW SUMMARY

SITE INFO	RMATION	Page # & Section # of Review	Review Includes this Information City Staff (Check)
impacts will occur to: the City sewage works in			
terms of quality and quantity (including existing			
infrastructure), the natural environment, and			
settlement issues.			
Has it been determined that there will be a	● Yes		N/A
negative impact to the natural environment, City	If yes, identify impact:	S.6.2. pg.10.	
sewage works, or surrounding properties has the			
study identified the following: the extent of the	No		
negative impact, the detail of the precondition			
state of all the infrastructure, City sewage works,			
and natural environment within the effected zone			
and the proposed remediation and monitoring			
plan?			

Summary of Additional Information and Key Items (if applicable):

HYDROLOGICAL REVIEW SUMMARY

Appendix A:

SANITARY/COMBINED

Sample Location: MW104A - 450 Dufferin Street, Toronto

Inorganics		Sample Result	Sample Result with upper RDL included	
Parameter	mg/L	mg/L	mg/L	μg/L
BOD	300	3.1	3.1 (2.0)	300,000
Fluoride	10	0.72	0.72 (0.02)	10,000
ТКМ	100	3.41	3.41 (0.05)	100,000
рН	6.0 - 11.5	8	8 (0.1)	6.0 - 11.5
Phenolics 4AAP	1	<0.0010	<0.0010 (0.001)	1,000
TSS	350	8.1	8.1 (3.0)	350,000
Total Cyanide	2	<0.0020	<0.0020 (0.002)	2,000
Metals				
Chromium Hexavalent	2	<0.00050	<0.00050 (0.0005)	2,000
Mercury	0.01	<0.0000050	<0.0000050 (0.000005)	10
Total Aluminum	50	0.279	0.279 (0.003)	50,000
Total Antimony	5	0.00196	0.00196 (0.0001)	5,000
Total Arsenic	1	0.0069	0.0069 (0.0001)	1,000
Total Cadmium	0.7	<0.0000500	<0.0000500 (0.000005)	700
Total Chromium	4	<0.00500	<0.00500 (0.0005)	4,000
Total Cobalt	5	<0.00100	<0.00100 (0.0001)	5,000
Total Copper	2	<0.00500	<0.00500 (0.0005)	2,000
Total Lead	1	0.000733	0.000733 (0.00005)	1,000
Total Manganese	5	0.12	0.12 (0.0001)	5,000
Total Molybdenum	5	0.0337	0.0337 (0.00005)	5,000
Total Nickel	2	<0.00500	<0.00500 (0.0005)	2,000
Total Phosphorus	10	0.0773	0.0773 (0.002)	10,000
Total Selenium	1	<0.000500	<0.000500 (0.00005)	1,000
Total Silver	5	<0.000100	<0.000100 (0.00001)	5,000
Total Tin	5	0.0017	0.0017 (0.0001)	5,000
Total Titanium	5	0.00332	0.00332 (0.0003)	5,000
Total Zinc	2	<0.0300	<0.0300 (0.003)	2,000
Petroleum Hydrocarbons				
Animal/Vegetable Oil & Grease	150	<5.0	<5.0 (5)	150,000
Mineral/Synthetic Oil & Grease	15	<5.0	<5.0 (5)	15,000

HYDROLOGICAL REVIEW SUMMARY

Volatile Organics		Sample Result	Sample Result with upper RDL included	
Parameter	mg/L	<u>mg/L</u>	mg/L	μg/L
Benzene	0.01	<0.00050	<0.00050 (0.0005)	10
Chloroform	0.04	<0.00050	<0.00050 (0.0005)	40
1,2-Dichlorobenzene	0.05	<0.00050	<0.00050 (0.0005)	50
1,4-Dichlorobenzene	0.08	<0.00050	<0.00050 (0.0005)	80
Cis-1,2-Dichloroethylene	4	<0.00050	<0.00050 (0.0005)	4,000
Trans-1,3-Dichloropropylene	0.14	<0.00030	<0.00030 (0.0003)	140
Ethyl Benzene	0.16	<0.00050	<0.00050 (0.0005)	160
Methylene Chloride	2	<0.0010	<0.0010 (0.001)	2,000
1,1,2,2-Tetrachloroethane	1.4	<0.00050	<0.00050 (0.0005)	1,400
Tetrachloroethylene	1	<0.00050	<0.00050 (0.0005)	1,000
Toluene	0.016	<0.00050	<0.00050 (0.0005)	16
Trichloroethylene	0.4	<0.00050	<0.00050 (0.0005)	400
Total Xylenes	1.4	<0.00050	<0.00050 (0.0005)	1,400
Semi-Volatile Organics				
Di-n-butyl Phthalate	0.08	<0.0010	<0.0010 (0.001)	80
Bis (2-ethylhexyl) Phthalate	0.012	<0.0020	<0.0020 (0.002)	12
3,3'-Dichlorobenzidine	0.002	<0.00040	<0.00040 (0.0004)	2
Pentachlorophenol	0.005	<0.00050	<0.00050 (0.0005)	5
Total PAHs	0.005	<0.00175	<0.00175 (0.00175)	5
Misc Parameters				
Nonylphenols	0.02	<0.0010	<0.0010 (0.001)	20
Nonylphenol Ethoxylates	0.2	<0.0020	<0.0020 (0.002)	200

Sample Collected: Temperature: Sept 21 / Oct 3, 2022 12 °C

M TORONTO

STORM

August 2018

HYDROLOGICAL REVIEW SUMMARY

Sample Location: MW104A - 450 Dufferin Street, Toronto

Inorganics		Sample Result	Sample Result with upper RDL included	
Parameter	mg/L	mg/L	mg/L	ug/L
рН	6.0 - 9.5	8	8 (0.1)	
BOD	15	3.1	3.1 (2.0)	15,000
Phenolics 4AAP	0.008	<0.0010	<0.0010 (0.001)	8
TSS	15	8.1	8.1 (3.0)	15,000
Total Cyanide	0.02	<0.0020	<0.0020 (0.002)	20
Metals				
Total Arsenic	0.02	0.0069	0.0069 (0.0001)	20
Total Cadmium	0.008	<0.0000500	<0.0000500 (0.000005)	8
Total Chromium	0.08	<0.00500	<0.00500 (0.0005)	80
Chromium Hexavalent	0.04	<0.00050	<0.00050 (0.0005)	40
Total Copper	0.04	<0.00500	<0.00500 (0.0005)	40
Total Lead	0.12	0.000733	0.000733 (0.00005)	120
Total Manganese	0.05	<u>0.12</u>	<u>0.12 (0.0001)</u>	50
Total Mercury	0.0004	<0.000050	<0.0000050 (0.000005)	0.4
Total Nickel	0.08	<0.00500	<0.00500 (0.0005)	80
Total Phosphorus	0.4	0.0773	0.0773 (0.002)	400
Total Selenium	0.02	<0.000500	<0.000500 (0.00005)	20
Total Silver	0.12	<0.000100	<0.000100 (0.00001)	120
Total Zinc	0.04	<0.0300	<0.0300 (0.003)	40
Microbiology				
E.coli	200	35	35 (1)	200,000
Volatile Organics				
<u>Parameter</u>	mg/L	mg/L	mg/L	ug/L
Benzene	0.002	<0.00050	<0.00050 (0.0005)	2
Chloroform	0.002	<0.00050	<0.00050 (0.0005)	2
1,2-Dichlorobenzene	0.0056	<0.00050	<0.00050 (0.0005)	6
1,4-Dichlorobenzene	0.0068	<0.00050	<0.00050 (0.0005)	7
Cis-1,2-Dichloroethylene	0.0056	<0.00050	<0.00050 (0.0005)	6
Trans-1,3-Dichloropropylene	0.0056	<0.00030	<0.00030 (0.0003)	6
Ethyl Benzene	0.002	<0.00050	<0.00050 (0.0005)	2
Methylene Chloride	0.0052	<0.0010	<0.0010 (0.001)	5
1,1,2,2-Tetrachloroethane	0.017	<0.00050	<0.00050 (0.0005)	17
Tetrachloroethylene	0.0044	<0.00050	<0.00050 (0.0005)	4
Toluene	0.002	<0.00050	<0.00050 (0.0005)	2
Trichloroethylene	0.0076	<0.00050	<0.00050 (0.0005)	8
Total Xylenes	0.0044	<0.00050	<0.00050 (0.0005)	4

HYDROLOGICAL REVIEW SUMMARY

Semi-Volatile Organics		Sample Result	Sample Result with upper RDL Included	. Lain
Di-n-butyi Phthalate	0.015	<0.0010	<0.0010 (0.001)	5
Bis (2-ethylhexyl) Phchalate	0.0068	<0.0020	<0.0020 (0.002)	8.8
3,3'-Dichlorobenzidine	0.0008	<0.00040	<0.00040 (0.0004)	0.9
Pentachlorophenol	0.002	<0.00050	<0.00050 (0.0005)	2
Total PAHs	0.002	<0.00175	<0.00175 (0.00175)	2
PCBs	0.0004	<0.000060	<0.000060 (0.00006)	0.4
Misc Parameters				
Nonyiphenois	0.001	<0.0010	<0.0010 (0.001)	1
Nonyiphenol Ethoxylates	0.01	<0.0010	<0.0020 (0.002)	10

Sample Collected: Temperature: Sept 21 / Oct 3, 2022 12 °C

Consulting Firm that prepared Hydrological Repo :

Terrapex Environmental Ltd.

Qualified Professional who completed the report summary:

Brian Theimer

Print Name

Qualified Professional who completed the report summary:

un 3Navos Signatupe * Date & Stamp

14 | Page

HM RK (450 Dufferin) LP

HYDROLOGICAL REVIEW

PROPOSED RESIDENTIAL DEVELOPMENT 450 DUFFERIN STREET TORONTO, ONTARIO

3 November 2022

CT3580.00

<u>Digital Distribution</u> HM RK (450 Dufferin) LP. Terrapex Environmental Ltd.

Terrapex Environmental Ltd.

90 Scarsdale Roat Toronto, Ontario, M3B 2R7 Telephone: (416) 245-0011 Facsimile: (416) 245-0012 Email: toronto@terrapex.com Website: www.terrapex.com

EXECUTIVE SUMMARY

Terrapex Environmental Ltd. (Terrapex) has prepared this hydrological review that is a study of hydrogeological characteristics in support of the development of a residential building that is planned for 450 Dufferin Street, in the City of Toronto. The study is designed to meet the City of Toronto's hydrological review requirements (August, 2018) and portions of the foundation drainage policy (January, 2022). The development will include a new underground parking garage extending to two levels.

A network of thirteen wells at ten locations is now established. Terrapex installed seven wells at four locations. Six monitoring wells were installed previously, with one additional well being demolished.

Groundwater levels were measured for three events over six weeks during late summer of 2022. Single well hydraulic tests were performed on two monitoring wells. A groundwater sample was analysed for suitability for discharge to the City of Toronto's sewers.

The average and shallowest depths to the water table observed were 4.3 and 0.9 metres below ground (mbg), respectively. The average and highest elevations of the water table were 90.2 and 93.4 metres above sea level, respectively. The construction excavation will cut below the water table into saturated soils. The walls will abut saturated silty clay till and sandy silt till and the base will abut saturated sandy silt till. The construction excavation for the garage will experience seepage that will need to be managed. Perched groundwater occurs at MW103 in the northeast corner, with a dry zone close to the excavation base.

According to the City prescribed methods, the maximum anticipated groundwater level ("MAGWL") using City of Toronto Foundation Drainage methods was 95.9 metres above sea level (masl).

The anticipated maximum dewatering rate to be managed of combined groundwater seepage (16,800 litres/day) and stormwater (37,400 litres) will be 54,200 litres/day. This amount indicates that dewatering will require an Environmental Activity and Sector Registry (EASR). A private discharge connection permit will still be required for discharge to a municipal sewer. We understand that the building garage will be constructed as watertight for the lifetime of the building so no foundation drainage will need to be managed.

The groundwater quality was acceptable for discharge to the City of Toronto's sanitary/combined sewer with no treatment. The groundwater quality was acceptable for discharge to the City of Toronto's storm sewer with treatment for manganese. Further confirmatory sampling is recommended if construction dewatering will be discharged to the storm sewer.

In pre-construction, the site is entirely covered by impervious surfaces of a building and paved parking. In post-construction, the site will be entirely covered by impervious surfaces of a building and paved parking. In pre- and post-construction there will be no pervious area. Thus, the amount of groundwater recharge is negligible in both scenarios, with no change due to development.
EXECUTIVE SUMMARY

1.0	BACKGROUND	1
2.0	LOCATION AND SETTING	1
2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	LOCATION AND PROPERTY DIMENSIONS	1 1 2 2 2 2 2
3.0	FIELD PROGRAM	2
3.1 3.2 3.3 3.4 3.5	DRILLING MONITORING WELLS GROUNDWATER LEVEL MEASUREMENTS GROUNDWATER SAMPLING HYDRAULIC CONDUCTIVITY TESTS	2 3 4 4 4
4.0	OBSERVATIONS	5
4.1 4.2	SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY GROUNDWATER LEVELS	5 6
5.0	ANALYSIS	7
5.1 5.2 5.3 5.4	HYDRAULIC CONDUCTIVITY HYDRAULIC GRADIENT GROUNDWATER QUALITY BUILDING GEOMETRY AND HYDROGEOLOGY	7 7 8 8
6.0	DEWATERING	9
6.1 6.2 6.3 6.4	CONSTRUCTION DEWATERING RATE PREDICTIONS	9 0 0
7.0	WATER BALANCE1	1
8.0	CLOSURE1	1
9.0	REFERENCES1	3

FIGURES

Figure 1	Site Location Plan
Figure 2	Site Vicinity Map – 500 m
Figure 3	Site Vicinity Map – 100 m
Figure 4	Locations of Investigations
Figure 5	Design Concept Plan
Figure 6	Groundwater Regime Plan
Figure 7	Hydrostratigraphic Profile: Southwest - Northeast

TABLES

Table 1	Monitoring Well Construction Details
Table 2	Observed Groundwater Levels
Table 3	Summary of Groundwater Quality
Table 4	Forecast of Construction Dewatering Rate
Table 5	Summary of Stratigraphy

APPENDICES

Appendix I	Figures
Appendix II	Tables
Appendix III	Borehole Records and Grain Size Distributions
Appendix IV	Hydraulic Conductivity Testing
Appendix V	Foundation Drainage Form
Appendix VI	Laboratory Record of Groundwater Quality

1.0 BACKGROUND

Terrapex Environmental Ltd. (Terrapex) was retained by HM RK (450 Dufferin) LP to review hydrogeological conditions at a planned development for 450 Dufferin Street (site) in the City of Toronto, Ontario. This document herein is intended to satisfy the requirements of the City of Toronto (City) for a hydrological review (August, 2018) and portions of the foundations drainage policy / guidelines (January, 2022) as part of the range of submissions required within the development application process.

This report was prepared in reference to the Ontario Water Resources Act, Ontario Regulation 387/04. "Water Taking Regulation" from the Ministry of the Environment, Conservation and Parks, and the Toronto Municipal Code Chapter 681 – Sewers.

2.0 LOCATION AND SETTING

2.1 LOCATION AND PROPERTY DIMENSIONS

The Site is located in the western portion of downtown Toronto, in the neighbourhood of Parkdale. It is approximately 330 m north of Queen Street West, fronting on the west side of Dufferin Street and the north side of Alma Avenue.

The Site essentially spans a square covering approximately $1,495 \text{ m}^2$ with dimensions of 39 m by 39 m, with these values being approximate. The general location is mapped on Figure 1. The postal code for the site is M6K 2A5.

2.2 PRESENT LAND USE

The current land use is a one-storey building on the eastern side hosting commercial uses and the central and western portions being a paved parking area.

Land in the site's vicinity within approximately 500 m is urbanized with mixed usage. Figures 2 and 3 show the site in its local context. The Site's vicinity within 500 m dominantly consists of low-rise residential single-family and semi-detached dwellings. Multiple low-rise and medium-rise apartment blocks are also found throughout the vicinity. Commercial use is found concentrated along Dufferin Street and Queen Street West. A multi-track railway corridor that is oriented northwest to southeast is located approximately 150 m to the southwest. A food produce distribution centre is located to immediate west.

2.3 PROPOSED DEVELOPMENT

The proposed development will demolish the existing building and then redevelop with a new residential/commercial building. The new building will have fifteen (15) storeys above grade.

Underlying the building will be constructed an underground parking garage consisting of two levels. The new garage structure will be designed with methods and materials that will render it water-tight for the lifetime of the building. The new underground garage structure will span essentially the extent of the property, as shown on Figure 5.

2.4 SITE TOPOGRAPHY

Relief in the site vicinity is a plain with a general slope grading down southward. The on-site grade is flat. The site elevation ranges from 94.2 masl in the southwest corner to 94.8 masl in the northeast corner, with these values being approximate. The planned main ground floor elevation will be at approximately 94.1 masl.

2.5 DRAINAGE

No watercourses, ponds, or other surface water features are located on the site.

The nearest surface water course is an un-named watercourse in High Park, approximately 2.1 kilometres to the west, which flows southward to Lake Ontario. The Lake Ontario shore is approximately 1.5 km to the southwest. Regional groundwater is expected to move southward towards the Lake.

The site itself, local roads and adjacent properties manage stormwater through catch basins and the piped municipal storm sewer system.

2.6 **REGIONAL GEOLOGY**

A surficial geological map (Ontario Geological Survey, 2010) shows the site as situated on coarse textured glacial lake deposits with a texture of sand and gravel with minor silt and clay.

Bedrock geology (Ontario Geological Survey, 2007) consists of shale with minor limestone of the Georgian Bay Formation.

2.7 SENSITIVE ECOLOGICAL RECEIVERS

Designated sensitive ecological areas such as Areas of Natural and Scientific Interest (ANSI) or Environmentally Significant Areas (ESA's) are absent within 500 m of the site (MNRF, 2022).

2.8 GROUNDWATER SUPPLY WELLS

The surrounding vicinity is urbanized, so is provided with piped municipal supplies sourced from Lake Ontario. No private supply wells are anticipated to be in active operation within 500 m.

The site is shown as being classified as Highly Vulnerable Aquifer with a score of 6 (MECP, 2022).

3.0 FIELD PROGRAM

The following describes the methodology and locations of investigation in the field program. Observations are provided in Section 4 and interpretations are provided in Section 5.

3.1 DRILLING

A drilling program was previously completed by Pinchin Ltd. during 20 to 24 February 2020. The program advanced seven (7) boreholes, MW1 through MW7, with depths ranging from 4.4 to 12.2 metres below ground (mbg).

Terrapex conducted a drilling program during 11 to 17 August 2022, to serve the purposes of this hydrological review, a geotechnical investigation, and the environmental site assessment. The main boreholes were advanced to depths ranging from 6.1 to 13.7 mbg. See Table 1 for specific depths.

Soils were logged in the field by a qualified geotechnical technician and descriptions were confirmed by a Professional Engineer at Terrapex's Toronto facilities. Drilling services were provided by Profile Drilling Inc. of Mississauga, Ontario.

3.2 MONITORING WELLS

The drilling program previously completed by Pinchin Ltd. during February 2020 installed seven monitoring wells, designated as, MW1 through MW7, with depths ranging from 4.8 to 9.1 mbg. These monitoring wells remained functional at the time of this study, with the exception of MW3 which was demolished. Locations are shown on Figure 4. The Pinchin wells are used for the study.

The Terrapex program installed monitoring wells at the four borehole locations: MW101, MW102, MW103 and MW104, as shown on Figure 4. The locations were selected to provide broad distribution with consideration of available space for manoeuvring a drilling rig at grade.

Monitoring well clusters were constructed at MW103 and MW104 to measure vertical hydraulic gradients. The wells were installed in adjacent separate boreholes. The designations have suffixes of deeper (D), intermediate (I) and shallower (S) screened intervals.

The target depth for MW101, MW103I, and MW104D was approximately 9.1 mbg, which has screens crossing the depth of 2 m below the P2 garage level driving surface. The target depth for MW103D was bedrock, which was encountered at 13.7 mbg. With the previous existing wells, the number of monitoring wells satisfied the City of Toronto Terms of Reference for Hydrological Review (2018).

The well components and their relationships to adjacent stratigraphy are shown in the borehole records of Appendix III and their dimensions are reported in Table 1. The well locations and elevations were surveyed using a TopCon GNSS Receiver.

The monitoring wells were constructed using environmental grade, 50 mm diameter, Schedule 40, PVC piping with machine slotted (10 slot) screens at the bottom. Each well was installed under a protective flush-mount casing.

Monitoring wells, when no longer useful, must eventually be abandoned by a licensed water well contractor. Abandonment must proceed in accordance with Regulation 903 and amendments issued under the Ontario Water Resources Act. The monitoring wells should remain until the time of construction to be available for observing groundwater conditions closer to the time of construction for dewatering planning.

3.3 GROUNDWATER LEVEL MEASUREMENTS

Suites of groundwater levels were measured in the monitoring well network on 23 August and 6 and 21 September 2022, at approximately two-weeks intervals. Groundwater levels were measured using an electric sounder device with graduated tape. Additional groundwater measurement events are recommended during Spring 2023.

3.4 GROUNDWATER SAMPLING

The monitoring well selected for groundwater sampling was MW104A at the southwestern corner. The well was purged and sampled using a peristaltic pump on 21 September 2022. Sample water was discharged directly without filtering to pre-cleaned bottles supplied by the laboratory with preservatives as appropriate for parameters. These bottles were iced and held in a cooler under Chain of Custody protocols prior to delivery.

The sample was submitted to ALS Laboratory Ltd. (ALS) of Waterloo, which is an independent laboratory that is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA). It was analysed for the suite of parameters specified under the Chapter 681 bylaw that regulates discharges to the sanitary/combined and storm sewers in the City of Toronto.

A parallel sample was field filtered and submitted for analysis of the suite of metals specified under Chapter 681 for review of potential treatment options.

Due to scheduling conflicts, the E.Coli, Biological Oxygen Demand (BOD), and Total Suspended Solids (TSS) were re-sampled from MW104A on 3 October 2022.

3.5 HYDRAULIC CONDUCTIVITY TESTS

Single well response tests (commonly referred to as "slug tests") to assess the hydraulic conductivity of adjacent formations were performed on monitoring wells MW101 and MW6. The test methods applied were a bail test, which is a rapid removal of a volume of slug of water using an elongated bailer, for MW6, and a slug test, which is a rapid introduction of a volume of slug of water, for MW101.

The ensuing rising or falling recovery to static level is observed over time initially using a manual instrument and by Solinst brand leveloggers over the test period. The loggers recorded at 30 seconds intervals. A barometric logger was also installed to allow removal of barometric pressure effects from the levelogger record.

Test data were analysed using the Aqtesolv software package by the Bouwer and Rice method.

4.0 OBSERVATIONS

4.1 SUBSURFACE MATERIALS AND HYDROSTRATIGRAPHY

The subsurface conditions encountered at each borehole are shown in detail on the borehole records provided in Appendix III. A hydrostratigraphic profile that illustrates the relationship to the planned building is provided as Figure 7.

The following stratigraphy was observed at Terrapex boreholes, in descending elevation sequence. See Table 5 for a schematic breakdown.

- *Fill.* This layer extends from near surface to a depth ranging of 1.1 to 1.7 mbg, with an average depth of 1.5 m. This layer is unsaturated. Its texture ranges from silty clay to sand and gravel, with inclusions of construction debris.
- *Sand*. A relatively thin layer of sand with trace to some silt extends from below the fill to depths of 2.0 to 2.7 mbg. This layer is unsaturated to possibly saturated at its base, depending on location. The layer is absent at MW104.
- *Clayey silt till.* This layer extends from below the fill or sand layer to depths ranging from 6.8 to 7.6 mbg. The texture is clayey silt with minor gravel and sand.
- *Sandy silt till*. This layer's thickness ranges from an upper surface of approximately 6.9 to 7.6 mbg to a lower surface of 7.9 to 11.4 mbg. At MW102 the layer is in contact with the shale bedrock in MW102. The texture is sandy silt with minor gravel and clay.
- *Sandy clayey silt till.* This layer's thickness ranges approximately 2.3 to 4.2 m below the sandy silt till. This layer is absent or a modified texture at MW102.
- *Bedrock*. Shale bedrock was encountered at depths ranging from 11.4 to 13.7 mbg, with corresponding elevations of 81.0 to 82.9 masl. The bedrock is reported be weathered and weak.

The above stratigraphic description is a generalization. Variations could occur in thickness, depth, presence, and texture of units. Constructors and dewatering contractors should review the nearest borehole records for specific locations and if necessary, drill to confirm conditions if critical to their activities. Internal sand lenses and clayey lenses are also possible.

Sieve and hydrometer grain size analyses were carried out on six soil samples. The test results are presented in Appendix V and summarized below.

Borehole Number	Sample Depth (Sample No.)	Sample Description	Gravel %	Sand %	Silt %	Clay %
MW101	2.3 mbg (4A)	Sand, trace silt, trace clay	0	92	6	2
MW101	3.8 mbg (6)	Clayey silt, some sand, some gravel	11	17	49	23
MW101	7.6 mbg (9)	Gravelly sand and silt, some clay	23	33	33	11
MW103	6.9 mbg (10)	Sandy silt, some gravel, some clay	18	26	40	16
MW103	9.9 mbg (13)	Gravelly silty sand, some clay	23	35	27	15
MW104	5.4 mbg (8)	Clayey sandy silt	0	22	48	30

4.2 GROUNDWATER LEVELS

Groundwater level observations are presented as depths and as elevations on Table 2. The monitoring followed Option 1 – Flexible, Year- Round as defined under the City of Toronto Foundation Drainage Guidelines.

On 6 September 2022, the average depth to the water table was 4.3 mbg, with a range from 1.0 mbg at MW1 to 8.6 mbg at MW101. The shallowest depth to the water table observed was 0.9 mbg at MW1.

On 6 September 2022, the average elevation of the water table was 90.2 masl, with a range from 86.1 masl at MW101 to 93.2 masl at MW1. The highest elevation of water table observed was 93.4 masl at MW1. As shown on Figure 6, groundwater elevation generally trends from highest in the southwest corner to lowest along the eastern and northern sides.

A perched water table condition was observed at MW103 that is in the northeastern corner. The intermediate well that is screened in the sandy silt till was dry for the three monitoring events. The shallower well MW103(S) indicates the water table at approximately 89.2 masl and the deepest well MW103(D) has a higher piezometric pressure of approximately 89.7 masl. The base of the shallow well screen and the top of the deep well screen was separated by 5.2 m.

Groundwater levels naturally fluctuate in response to seasons, to annual variations and possibly to major storm events. The measurements reported herein occurred during summer, which is typically the deepest depth and lowest elevation in the annual seasonal cycle. It is possible that the water table elevation could rise further (become shallower depth) to peak during a wetter climatic variability.

While not required, additional monitoring of groundwater levels could be considered for spring 2023 at monthly intervals to determine the maximum groundwater level elevation, which would

be timed for the beginning of April. This information would allow more accuracy in the dewatering calculations that assumed a buffer of 1.5 m above maximum elevations due to measurements occurring in later summer, rather than the maximum phase in spring.

5.0 ANALYSIS

5.1 HYDRAULIC CONDUCTIVITY

Hydraulic conductivity is a parameter for quantifying the ability of a soil unit to transmit water. This parameter is necessary for predicting the rate of seepage into excavations to be intercepted or collected by dewatering efforts during construction.

Analysis curves from single well response tests are presented in Appendix VI. The resulting interpreted hydraulic conductivity values were as follows.

- MW6, 5.3 x 10⁻⁹ m/s, screened across sandy clayey silt till, trace gravel.
- MW101, 5.3 x 10⁻¹⁰ m/s, screened across sandy silt till, some gravel to gravelly, some clay

Grain size analysis can also be used to interpret a hydraulic conductivity using the Hazen formula that is a function of the d_{10} value, which is the size fraction below 10%, by weight. This formula is applicable for silt and coarser sediments. Samples in the saturated zone were too fine for application of the formula.

5.2 HYDRAULIC GRADIENT

The water table is commonly a subdued reflection of the overlying ground surface with shallow groundwater movement parallel to the overlying general grade. Based on this interpretation and local topography, shallow groundwater in the vicinity of the site would be anticipated to move generally southward towards Lake Ontario.

Instead, groundwater levels for wells screened close to the foundation elevation appears to move northeastward, as illustrated on Figure 6. The magnitude of the horizontal hydraulic gradient is approximately 0.08 m/m. The reason for deviation is unknown. This deviation is not significant for construction of the building.

The vertical hydraulic gradient was measured by the monitoring well cluster of MW104. The vertical gradients for 6 and 21 September 2022 were 0.33 and 0.50 m/m respectively. The gradient direction is downward, which indicates the site functions as a recharge area, albeit with limited amounts due to the impervious coverage and the relatively low permeability clayey silt layer. The relatively high vertical gradient corroborates low permeability soils. The well cluster at MW103 could not be assessed for vertical gradient due to the apparent perched conditions.

Local variations in topography, soil type and buried utilities trenches can influence the direction of the horizontal hydraulic gradient.

5.3 GROUNDWATER QUALITY

The reported concentrations of tested parameters for the sample obtained from MW104A are provided in Table 3. The Certificate of Analysis issued by ALS is provided in Appendix IV.

The results indicate the groundwater quality is suitable for discharge to the sanitary / combined sewer without treatment.

The results indicate the groundwater quality is suitable for discharge to the storm sewer with treatment for manganese. The manganese concentration was 0.12 mg/L, as compared to the storm sewer criterion of 0.05 mg/L.

All other reported results for the tested parameters complied with the sanitary/combined sewer and storm sewer criteria.

Dataloggers during hydraulic conductivity testing recorded groundwater temperatures in the range of 11.7 to 12.0 °C, as measured at MW101 and MW6.

5.4 BUILDING GEOMETRY AND HYDROGEOLOGY

The new parking garage will extend to two subsurface levels. The heights of P1 and P2 will be 4.0 m and 3.0 m respectively, resulting in a combined depth of 7.0 mbg. The lowest grade for the walking / driving surface of P2 level is 87.2 masl. The ground floor elevation for the building will be at 94.1 masl.

A building of this design will have a raft slab with a typical thickness of 2.0 to 3.0 m. For calculations, an assumed conservative thickness of 3.0 m will be applied. This design suggests a probable excavation base depth of 10.0 mbg, with a corresponding elevation of approximately 84.1 masl.

The average of depths to water table in September was 4.3 mbg with the shallowest depth being 0.9 mbg. A decrease in depth of 1.0 to 1.5 m would be possible during spring, resulting in depths to water table ranging from 2.8 mbg to close to grade.

The excavation base of 10.0 mbg will extend several metres below the water table into saturated soils, indicating that groundwater seepage should be anticipated into the base and side walls. A dry zone at depth is indicated at the northeast corner at MW103, indicating that some portions of the excavation may not experience seepage.

The saturated soils within the planned depth of excavation consist of silty clay till along the side walls with lower portions consisting of sandy silt till. Sandy silt till will be cut across the base. Variations are possible. The sandy silt till is anticipated to offer higher hydraulic conductivity than the clayey silt till so will issue more seepage. See the hydrostratigraphic profile on Figure 7 that illustrates the geometry.

6.0 DEWATERING

Groundwater will move toward the construction excavation so must be controlled to provide dry and safe working conditions. Disposal of accumulated water generated by incident precipitation will occasionally be required as well.

The Ministry of the Environment, Conservation and Parks (MECP) requires a Permit to Take Water (PTTW) or an Environmental Activity and Sector Registry (EASR) for groundwater takings exceeding 50,000 litres per day (L/day). For the purpose of construction, a PTTW is required for dewatering extraction rates that exceed 400,000 L/day. An EASR is required for a groundwater seepage rate between 50,000 and 400,000 L/day.

6.1 CONSTRUCTION DEWATERING RATE PREDICTIONS

Groundwater seepage was estimated by simplifying the excavation to a mathematical analog of a circular well (Powers et al., 2007). Calculations are based on anticipation of response similar to an unconfined hydraulic aquifer. The results of calculations for groundwater seepage for construction dewatering are summarized on Table 4. These calculations indicate that the maximum amount of groundwater seepage during construction will be 16,800 L/day. The seepage rate during construction will be a maximum of 8,400 L/day without the factor of safety.

Common control measures during construction include by dewatering wells, wellpoints in adjacent soils or by collection and pumping from sumps in the interior of the excavation. The particular method for dewatering of the excavation should be decided by the construction and dewatering contractors.

Open excavations will capture incident precipitation. The volume as produced by a relatively large storm was estimated using the excavation area and a precipitation event of 25 mm. Such precipitation events statistically recur four to five times per year. The excavation will collect 37,400 litres per event. Obviously, larger precipitation events would produce larger amounts to manage, although occurring less frequently. The precipitation amounts must be added to the groundwater seepage amount in the applications to discharge. Stormwater runoff from adjacent lands to excavations should be prevented by means of temporary surface grades, berms or ditches.

The combined rate of maximum amount of groundwater seepage anticipated during construction and the stormwater amount will be 54,200 litres per day. This amount indicates that an EASR will be required for construction.

The calculations are based on conservative assumptions that predict a relatively high rate that is less likely yet remains possible. The highest hydraulic conductivity value was applied. The shallowest water table was used. A factor of safety of 2 was applied to the predicted seepage amount to allow for heterogeneities. A ten times factor of safety was applied for hydraulic conductivity.

The planned development will construct buried municipal infrastructure, such as piped sanitary sewer, storm sewer and other utilities. The depths of excavation trenches are presently not

determined. Where below the water table, seepage management should be anticipated for installing of this infrastructure under dry and safer working conditions.

The cumulative amounts pumped from the excavation should be monitored daily to confirm that the requested pumping rates stated in the EASR and municipal agreements are not exceeded.

The City of Toronto will anticipate receiving a Servicing Report and a Stormwater Management Report, as well as obtaining a Private Water Discharge Agreement (PWDA). The PDWA will be required for short-term construction dewatering discharge to either to the storm sewer or to the sanitary sewer.

We understand that the building garage structure will be constructed using watertight materials, construction methods and designs to last for the lifespan of the building. No foundation drains are planned, so no drainage will be collected to require management or disposal.

6.2 RADIUS OF INFLUENCE AND SENSITIVE RECEIVERS

The radius of influence is the distance range beyond which the drawdown on groundwater caused by dewatering is not expected to be detectable. The radius of influence is commonly estimated using the formula of Sichardt and Kryieleis (Powers et al, 2007), which is noted in Table 4. The maximum radius of influence predicted is approximately 2 m beyond the excavation boundary.

No off-site ecologically sensitive receivers or private water supply wells exist within the radius of influence that could be negatively affected by dewatering. No areas of significant groundwater contamination are known to be present within the radius of influence that would be collected or diverted by dewatering and foundation drains.

6.3 WATER QUALITY OF DISCHARGE

As noted in Section 5.3, groundwater quality can be discharged to the sanitary / combined sewer with no treatment and can be discharged to the storm sewer with treatment for manganese.

The elevated manganese concentration appears to be in dissolved form. The concentration of unfiltered sample was 0.12 mg/L while the concentration of the filtered sample was 0.155 mg/L. That the concentration of the filtered sample was higher than the unfiltered sample is attributed to natural variability in consecutive samples. Chemical treatment methods would need to be applied for discharge to the storm sewer.

6.4 FOUNDATION DRAINAGE REQUIREMENTS AND FURTHER TESTING

The partially completed City of Toronto's Foundation Drainage Summary Form is provided in Appendix VII.

Groundwater was measured for three events under Option 1 of the Foundation Drainage Guidelines (January, 2022). The highest groundwater levels were measured at MW1, with the highest in August being 93.38 masl and the highest in September being 93.22 masl. The fluctuation allowances for August and September are 2.4 and 2.6 m, respectively. Adding these

allowances to the highest groundwater elevations was 95.92 masl, which is the maximum anticipated groundwater level (MAGWL).

7.0 WATER BALANCE

Typically, incident precipitation moves through a sequence beginning with infiltration through a pervious soil surface, moving down through the unsaturated zone and then recharging the shallow groundwater. In turn, this shallow groundwater moves toward watercourses to contribute to baseflow or to replenish aquifers, if present. Impervious surfaces – such as buildings or paving - block infiltration, so diverted precipitation becomes runoff that is directed to the storm sewer.

The pre-construction land use is entirely covered by impervious features that include the existing building and the paved parking lot. The minor lawns along Alma Avenue provide negligible pervious soil. The post-construction land use will similarly be entirely covered by impervious features that include the new building and paved driving and walking lanes. Both pre-construction and post-construction allow virtually no infiltration to recharge the groundwater regime. Thus, there will be negligible change in recharge due to development.

Low impact development (LID) measures that can promote infiltration to recharge groundwater are not feasible due to the underground parking garage spanning essentially the entire site area. Also, the shallow soil horizon that is not fill is clayey silt that would only provide limited recharge capacity.

8.0 CLOSURE

This report has been completed in accordance with the terms of reference for this project as agreed upon by HM RK (450 Dufferin) LP. (the Client) and Terrapex Environmental Ltd. (Terrapex) and generally accepted hydrogeological consulting practices in this area.

The reported information is believed to provide a reasonable representation of the general hydrogeological conditions at the site; however, studies of this nature have inherent limitations. The data were collected at specific locations and conditions may vary at other locations, or with the passage of time. Where applicable, the assessment of the environmental quality of groundwater was limited to a study of those chemical parameters specifically addressed in this report.

Terrapex has relied in good faith on information and representations obtained from the Client and third parties and, except where specifically identified, has made no attempt to verify such information. Terrapex accepts no responsibility for any deficiency or inaccuracy in this report as a result of any misstatement, omission, misrepresentation, or fraudulent act of those providing information. Terrapex shall not be responsible for conditions or consequences arising from relevant facts that were concealed, withheld, or not fully disclosed at the time of the study.

This report has been prepared for the sole use of HM RK (450 Dufferin) LP. Terrapex accepts no liability for claims arising from the use of this report, or from actions taken or decisions made as a result of this report, by parties other than HM RK (450 Dufferin) LP.

Respectfully submitted, TERRAPEX ENVIRONMENTAL LTD.

Andrew Darlano

BRIANO Brian D, Theimer, M,Sc.

Andraw Durbano, M.Sc., P.Geo. Hydrogeologist

Senior Hydrogeologist

9.0 **REFERENCES**

R. Allan Freeze and John A. Cherry. 1979. Groundwater.

Ministry of Environment, Conservation and Parks. 2022a. Source Protection Information Atlas. Interactive mapping application on the internet.

Ministry of Environment, Conservation and Parks. 2022b. Water well database listings.

Ministry of the Natural Resources and Forestry. 2022. "Make a Natural Heritage Map". Interactive mapping application on Internet.

Ontario Geological Survey. 2010. MRD-128. Surficial geology of southern Ontario. Referenced to Google Earth.

Ontario Geological Survey. 2007. MRD-219. Paleozoic geology of southern Ontario. Referenced to Google Earth.

Pinchin Ltd. March 16, 2020. Phase II Environmental Site Assessment. 450 Dufferin Street, Toronto, Ontario. File 268429.001.

J. Patrick Powers, Arthur Corwin, Paul Schmall, Walter Kaeck. 2007. Construction Dewatering and Groundwater Control. Third Edition.

Superkul Inc. September 30, 2022. Architectural Package.

Vumap. 2022. Interactive mapping application on Internet.

Young & Young Surveying [Etobicoke 2006] Inc. February 18, 2011. Survey Report. Project 07-T7137-1.

APPENDICES

APPENDIX I FIGURES

swilliams Wr/PROJECTS/Toronto/CT3580.00 450 Dufferin Street East, Toronto/MXD/Hydrog/CT3580.00 FIG1 SITE LOCATION.mxd

APPENDIX II TABLES

TABLE 1Monitoring Well Construction Details450 Dufferin Street, Toronto

Position and Depth

Well Desig.	UTM	UTM	Date of	Stick	Depth of	Depth to	Screen	Depth to	Depth to	Depth to
	Northing	Easting	Construct	Down	Borehole	Well	Length	Screen	Screen	Top Sand
						Bottom		Base	Тор	
(m)	(m)	(m)	dd-mmm-yy	(m)	(m bg)	(m bg)	(m)	(m bg)	(m bg)	(m bg)
MW1	4833653	626600	20-Feb-20	-0.02	9.14	8.70	3.05	8.60	5.65	5.35
MW2	4833664	626594	20-Feb-20	-0.09	8.23	7.62	3.05	7.52	4.57	4.27
MW4	4833682	626608	24-Feb-20	-0.25	6.10	4.80	3.05	4.70	1.75	1.45
MW5	4833676	626594	21-Feb-20	-0.14	11.61	9.14	3.05	9.04	6.09	5.79
MW6	4833658	626621	24-Feb-20	-0.08	12.24	9.14	3.05	9.04	6.09	5.79
MW7	4833681	626613	24-Feb-20	-0.02	12.19	9.14	3.05	9.04	6.09	5.79
MW101	4833679	626596	11-Aug-22	-0.12	12.50	9.14	1.52	9.04	7.62	7.32
MW102	4833666	626619	12-Aug-22	-0.08	11.27	6.50	3.05	6.40	3.45	3.15
MW103D	4833684	626613	15/16-Aug-22	-0.14	13.72	12.80	1.52	12.70	11.28	10.98
MW103I	4833684	626613	16-Aug-22	-0.09	9.14	9.14	1.52	9.04	7.62	7.32
MW103S	4833685	626613	16-Aug-22	-0.13	6.10	6.10	3.05	6.00	3.05	2.75
MW104D	4833657	626599	17-Aug-22	-0.08	10.36	9.14	1.52	9.04	7.62	7.32
MW104S	4833657	626599	17-Aug-22	-0.08	4.00	4.00	3.05	3.90	0.95	0.65

Key Elevations

Well Desig.	Ground	End of	Top of Pipe	Screen	Screen
	Elev.	Borehole	Elev.	Base	Top Elev.
		Elev.		Elev.	
	(m asl)	(m asl)	(m asl)	(m asl)	(m asl)
MW1	94.26	85.12	94.25	85.66	88.61
MW2	94.49	86.26	94.40	86.97	89.92
MW4	94.67	88.57	94.41	89.97	92.92
MW5	94.68	83.07	94.54	85.64	88.59
MW6	94.22	81.98	94.14	85.18	88.13
MW7	94.52	82.33	94.49	85.48	88.43
MW101	94.77	82.27	94.65	85.73	87.15
MW102	94.32	83.05	94.25	87.92	90.87
MW103D	94.65	80.93	94.51	81.95	83.37
MW103I	94.60	85.46	94.51	85.56	86.98
MW103S	94.62	88.52	94.49	88.62	91.57
MW104D	94.29	83.93	94.21	85.25	86.67
MW104S	94.30	90.30	94.21	90.40	93.35

Notes:

m asl = metres above sea level m bg = metres below ground (or grade)

TABLE 2Observed Groundwater Levels450 Dufferin Street, Toronto

Well Desig.	Date	Ground Elev.	Top Pipe Elev.	Groun De	dwater pth	Groundwater Elev.
		(m asi)	(m asl)	(m bmp)	(m bg)	(m asl)
MW1	23-Aug-22 06-Sep-22	94.26	94.25	0.87 1.03	0.88 1.04	93.38 93.22
	21-Sep-22			1.17	1.19	93.06
MW2	23-Aug-22 06-Sep-22 21-Sep-22	94.49	94.40	3.14 2.99 3.19	3.22 3.08 3.28	91.27 91.41 91.21
MW4	23-Aug-22 06-Sep-22 21-Sep-22	94.67	94.41	- 1.99 2.16	- 2.24 2.42	- 92.43 92.25
MW5	23-Aug-22 06-Sep-22 21-Sep-22	94.68	94.54	4.19 4.13 4.35	4.32 4.27 4.48	90.35 90.41 90.19
MW6	23-Aug-22 06-Sep-22 21-Sep-22	94.22	94.14	- 4.84 5.05	- 4.92 5.13	- 89.30 89.09
MW7	23-Aug-22 06-Sep-22 21-Sep-22	94.52	94.49	4.55 4.36 4.40	4.57 4.38 4.42	89.95 90.14 90.09
MW101	23-Aug-22 06-Sep-22 21-Sep-22	94.77	94.65	8.58 8.51 7.75	8.69 8.63 7.86	86.08 86.14 86.91
MW102	23-Aug-22 06-Sep-22 21-Sep-22	94.32	94.25	1.78 4.84 4.53	1.86 4.92 4.61	92.47 89.41 89.72
MW103D	23-Aug-22 06-Sep-22 21-Sep-22	94.65	94.51	5.02 4.79 4.78	5.17 4.94 4.92	89.49 89.72 89.73

TABLE 2Observed Groundwater Levels450 Dufferin Street, Toronto

Well Desig.	Date	Ground Elev.	Top Pipe Elev.	Groundwater Depth		Groundwater Elev.
		(11 231)	(11 231)	(in omp)	(m bg)	(11 231)
MW103I	23-Aug-22	94.60	94.51	Dry	-	-
	06-Sep-22			Dry	-	-
	21-Sep-22			Dry	-	-
MW103S	23-Aug-22	94.62	94.49	Dry	-	-
	06-Sep-22			5.99	6.11	88.51
	21-Sep-22			5.29	5.41	89.21
MW104D	23-Aug-22	94.29	94.21	7.99	8.07	86.22
	06-Sep-22			5.09	5.17	89.12
	21-Sep-22			5.01	5.10	89.19
MW104S	23-Aug-22	94.30	94.21	Dry	-	-
	06-Sep-22			2.90	2.98	91.32
	21-Sep-22			1.69	1.78	92.52

Notes

1. m asl = metres above sea level

2. m bmp = metres below measurement point

3. m bg = metres below ground

NA = Not Accessible

SANITARY/COMBINED Sample Location: MW104A - 450 Dufferin Street, Toronto

Inorganics		Sample Result	Sample Result with upper RDL included	
<u>Parameter</u>	mg/L	mg/L	mg/L	<u>μg/L</u>
BOD	300	3.1	3.1 (2.0)	300,000
Fluoride	10	0.72	0.72 (0.02)	10,000
ТКМ	100	3.41	3.41 (0.05)	100,000
рН	6.0 - 11.5	8	8 (0.1)	6.0 - 11.5
Phenolics 4AAP	1	<0.0010	<0.0010 (0.001)	1,000
TSS	350	8.1	8.1 (3.0)	350,000
Total Cyanide	2	<0.0020	<0.0020 (0.002)	2,000
Metals				
Chromium Hexavalent	2	<0.00050	<0.00050 (0.0005)	2,000
Mercury	0.01	<0.000050	<0.0000050 (0.000005)	10
Total Aluminum	50	0.279	0.279 (0.003)	50,000
Total Antimony	5	0.00196	0.00196 (0.0001)	5,000
Total Arsenic	1	0.0069	0.0069 (0.0001)	1,000
Total Cadmium	0.7	<0.0000500	<0.0000500 (0.000005)	700
Total Chromium	4	<0.00500	<0.00500 (0.0005)	4,000
Total Cobalt	5	<0.00100	<0.00100 (0.0001)	5,000
Total Copper	2	<0.00500	<0.00500 (0.0005)	2,000
Total Lead	1	0.000733	0.000733 (0.00005)	1,000
Total Manganese	5	0.12	0.12 (0.0001)	5,000
Total Molybdenum	5	0.0337	0.0337 (0.00005)	5,000
Total Nickel	2	<0.00500	<0.00500 (0.0005)	2,000
Total Phosphorus	10	0.0773	0.0773 (0.002)	10,000
Total Selenium	1	<0.000500	<0.000500 (0.00005)	1,000
Total Silver	5	<0.000100	<0.000100 (0.00001)	5,000
Total Tin	5	0.0017	0.0017 (0.0001)	5,000
Total Titanium	5	0.00332	0.00332 (0.0003)	5,000
Total Zinc	2	<0.0300	<0.0300 (0.003)	2,000
Petroleum Hydrocarbons				
Animal/Vegetable Oil & Grease	150	<5.0	<5.0 (5)	150,000
Mineral/Synthetic Oil & Grease	15	<5.0	<5.0 (5)	15,000

Volatile Organics		Sample Result	Sample Result with upper RDL included	
Parameter	mg/L	mg/L	mg/L	<u>μg/L</u>
Benzene	0.01	<0.00050	<0.00050 (0.0005)	10
Chloroform	0.04	<0.00050	<0.00050 (0.0005)	40
1,2-Dichlorobenzene	0.05	<0.00050	<0.00050 (0.0005)	50
1,4-Dichlorobenzene	0.08	<0.00050	<0.00050 (0.0005)	80
Cis-1,2-Dichloroethylene	4	<0.00050	<0.00050 (0.0005)	4,000
Trans-1,3-Dichloropropylene	0.14	<0.00030	<0.00030 (0.0003)	140
Ethyl Benzene	0.16	<0.00050	<0.00050 (0.0005)	160
Methylene Chloride	2	<0.0010	<0.0010 (0.001)	2,000
1,1,2,2-Tetrachloroethane	1.4	<0.00050	<0.00050 (0.0005)	1,400
Tetrachloroethylene	1	<0.00050	<0.00050 (0.0005)	1,000
Toluene	0.016	<0.00050	<0.00050 (0.0005)	16
Trichloroethylene	0.4	<0.00050	<0.00050 (0.0005)	400
Total Xylenes	1.4	<0.00050	<0.00050 (0.0005)	1,400
Semi-Volatile Organics				
Di-n-butyl Phthalate	0.08	<0.0010	<0.0010 (0.001)	80
Bis (2-ethylhexyl) Phthalate	0.012	<0.0020	<0.0020 (0.002)	12
3,3'-Dichlorobenzidine	0.002	<0.00040	<0.00040 (0.0004)	2
Pentachlorophenol	0.005	<0.00050	<0.00050 (0.0005)	5
Total PAHs	0.005	<0.00175	<0.00175 (0.00175)	5
Misc Parameters				
Nonylphenols	0.02	<0.0010	<0.0010 (0.001)	20
Nonylphenol Ethoxylates	0.2	<0.0020	<0.0020 (0.002)	200

Sample Collected:	
Temperature:	

Sept 21 / Oct 3, 2022 12 °C

Sample Location: MW104A - 450 Dufferin Street, Toronto

STORM	Sample Location: MW104A - 450 Dufferin Street, Toronto										
Inorganics		Sample Result	Sample Result with upper RDL included								
<u>Parameter</u>	mg/L	mg/L	mg/L	ug/L							
рН	6.0 - 9.5	8	8 (0.1)								
BOD	15	3.1	3.1 (2.0)	15,000							
Phenolics 4AAP	0.008	<0.0010	<0.0010 (0.001)	8							
TSS	15	8.1	8.1 (3.0)	15,000							
Total Cyanide	0.02	<0.0020	<0.0020 (0.002)	20							
Metals											
Total Arsenic	0.02	0.0069	0.0069 (0.0001)	20							
Total Cadmium	0.008	<0.0000500	<0.0000500 (0.000005)	8							
Total Chromium	0.08	<0.00500	<0.00500 (0.0005)	80							
Chromium Hexavalent	0.04	<0.00050	<0.00050 (0.0005)	40							
Total Copper	0.04	<0.00500	<0.00500 (0.0005)	40							
Total Lead	0.12	0.000733	0.000733 (0.00005)	120							
Total Manganese	0.05	<u>0.12</u>	<u>0.12 (0.0001)</u>	50							
Total Mercury	0.0004	<0.000050	<0.0000050 (0.000005)	0.4							
Total Nickel	0.08	<0.00500	<0.00500 (0.0005)	80							
Total Phosphorus	0.4	0.0773	0.0773 (0.002)	400							
Total Selenium	0.02	<0.000500	<0.000500 (0.00005)	20							
Total Silver	0.12	<0.000100	<0.000100 (0.00001)	120							
Total Zinc	0.04	<0.0300	<0.0300 (0.003)	40							
Microbiology											
E.coli	200	35	35 (1)	200,000							
Volatile Organics											
<u>Parameter</u>	mg/L	mg/L	mg/L	ug/L							
Benzene	0.002	<0.00050	<0.00050 (0.0005)	2							
Chloroform	0.002	<0.00050	<0.00050 (0.0005)	2							
1,2-Dichlorobenzene	0.0056	<0.00050	<0.00050 (0.0005)	6							
1,4-Dichlorobenzene	0.0068	<0.00050	<0.00050 (0.0005)	7							
Cis-1,2-Dichloroethylene	0.0056	<0.00050	<0.00050 (0.0005)	6							
Trans-1,3-Dichloropropylene	0.0056	<0.00030	<0.00030 (0.0003)	6							
Ethyl Benzene	0.002	<0.00050	<0.00050 (0.0005)	2							
Methylene Chloride	0.0052	<0.0010	<0.0010 (0.001)	5							
1,1,2,2-Tetrachloroethane	0.017	<0.00050	<0.00050 (0.0005)	17							
Tetrachloroethylene	0.0044	<0.00050	<0.00050 (0.0005)	4							
Toluene	0.002	<0.00050	<0.00050 (0.0005)	2							
Trichloroethylene	0.0076	<0.00050	<0.00050 (0.0005)	8							
Total Xylenes	0.0044	<0.00050	<0.00050 (0.0005)	4							

Semi-Volatile Organics		Sample Result	Sample Result with upper RDL included	
Di-n-butyl Phthalate	0.015	<0.0010	<0.0010 (0.001)	5
Bis (2-ethylhexyl) Phthalate	0.0088	<0.0020	<0.0020 (0.002)	8.8
3,3'-Dichlorobenzidine	0.0008	<0.00040	<0.00040 (0.0004)	0.8
Pentachlorophenol	0.002	<0.00050	<0.00050 (0.0005)	2
Total PAHs	0.002	<0.00175	<0.00175 (0.00175)	2
PCBs	0.0004	<0.000060	<0.000060 (0.00006)	0.4
Misc Parameters				
Nonylphenols	0.001	<0.0010	<0.0010 (0.001)	1
Nonylphenol Ethoxylates	0.01	<0.0020	<0.0020 (0.002)	10

Sample Collected: Temperature: Sept 21 / Oct 3, 2022 12 °C

Table 4Forecast of Construction Dewatering Rate450 Dufferin Street, Toronto

Parameter	Value	Units	Symbol	Origin of Value
Aquifer Hydraulic Conditions				
Hydraulic conductivity	5.3E-09			Highest observed in tests for wells
Applied hydraulic conductivity	5.3E-08	m/s	к	Highest observed multiplied by a factor of safety of 10
Hydraulic connection to water table	Unconfined	•		Interpreted
Analogous Dewatering Array Dimension	IS			
Analogous simplified shape	Circle			
Internal area to be dewatered	1,495	m²	А	Design plans
Radius of an equivalent well	21.8	m	R _w	= sqrt (Α / π)
Subsurface Vertical Dimensions				
Surface grade	94.1	masl	E _G	Average surface elevation of wells on site
Foundation slab (upper surface), elevation	87.1	masl	E _F	= E _G - D _F
Foundation slab (upper surface), depth	7.0	mbg	D _F	Design plans
Elevation difference between foundation slab and raft slab	3.0	m		Typical construction design
Base of excavation, elevation	84.1	masl	E _{EX}	Assumed 3 m lower than foundation slab surface
Base of excavation, depth	10.0	mbg	D_EX	Assumed 3 m deeper than foundation slab surface
Elevation difference between foundation drains and reference datum	3.0	m		Assumed
Reference datum (for calculation)	81.1	masl	E _{RD}	Set at 3 m below foundation drains
Dewatering Vertical Levels and Dimensi	ons			
Water table, elevation	93.4	masl	EW_{HIGH}	Highest observed to date
Water table, depth	0.7	m	DW_{SHALL}	= E _G - EW _{HIGH}
Buffer for seasonal fluctuation	1.5	m	В	Based on highest measured during a spring season
Assumed water table elevation (pre- pumping level)	94.9	masl	EW _{HIGHEST}	= EW _{HIGH} + B. Allows for seasonal fluctuation
Height of water table above reference datum	13.8	m	н	= EW _{HIGHEST} - E _{RD}
Target dewatering level, elevation	83.1	masl	EW _{TARG}	Target is 1.0 m below excavation base
Target dewatering level, depth	11.0	mbg	DW_{TARG}	Target is 1.0 m below excavation base
Height of target water level above datum	2.0	m	h _T	= EW _{TARG} - E _{RD}
Radius of Influence				
Applied equation R _c	_⊃ = 3000 * (H – h _⊤) * (I	<) ^{0.5}		Sichardt and Kryieleis (1930)
Radius of Influence for main excavation	8.1	m	R _o	
Stormwater Management				
Design storm	0.025	m/24 hours		Relatively large storm, recurs 4 to 5 times per year
Open excavation area	1,495	m²		Design plans
Volume captures from one storm	37,375	L		
Estimated Flows to be Managed	2 2	e		
Applied equation from main excavation Q_0	$_{\rm GW} = K * (H^2 - h_{\rm T}^2) / (5$.31 x 10 ^{-°} * In (($R_0 + R_W / R_W)$	Powers et. al, 2007
Groundwater seepage, with safety factor	5.9	litres/min	Q _{GW}	Calculated from values in this sheet
Change of units	8,424	litres/day	Q_{GW}	Allows for unknown conditions between boreholes
	2			or beyond the excavation walls
Groundwater seepage, with safety factor	16,800	litres/day		= Safety Factor x Q_{GW} . Rounded value.
Groundwater seepage, with safety factor and large storm event	54,175	litres/day		
Applicable Regulatory Instrument	E	ASR		MECP, O.Reg 245/11, O.Reg 387/04; OWRA S.41

Table 5Summary of Stratigraphy450 Dufferin Street, Toronto

Well ID	MW101	MW102	MW103	MW104
Grade Elev. (masl)	94.8	94.3	94.6	94.3
Base of Fill (mbg)	1.5	1.1	1.5	1.7
Depth (mbg)				
0 - 1	Fill	Fill	Fill	Fill
1 - 2	Fill	Silty sand	Fill	Fill
2 - 3	Silty sand	Silty clay	Silty clay	Silty clay
3 - 4	Silty clay	Silty clay	Silty clay	Silty clay
4 - 5	Silty clay	Silty clay	Silty clay	Silty clay
5 - 6	Silty clay	Silty clay	Silty clay	Silty clay
6 - 7	Silty clay	Silty clay	Silty clay	Silty clay
7 - 8	Silty clay	Silty sand	Silty clay	Sandy silt
8 - 9	Sandy silt	Sandy silt	Sandy silt	Clayey silt
9 - 10	Clayey silt	Sandy silt	Clayey silt	Clayey silt
10 - 11	Clayey silt	Sandy silt	Clayey silt	Clayey silt
11 - 12	Clayey silt	Sandy silt	Clayey silt	-
12 - 13	Sand and silt	-	Clayey silt	-
13 - 14	-	-	Clayey silt	-
Depth of bedrock	12.9	11.4	13.7	-

<u>Notes</u>

1. mbg = metres below ground

2. masl = metres above sea level

3. Any layer with thickness or portion less than 0.5 m is not included.

4. See individual logs for detailed stratigraphy and description. This table is a summary.

APPENDIX III BOREHOLE RECORDS AND GRAIN SIZE DISTRIBUTIONS

CLIENT: HM RK (450 Dufferin) LP						PROJECT NO.: CT3580.00				RECORD OF:									
ADDRESS: 450 Dufferin Street																			
CITY/PROVINCE: Toronto, ON NORTHING (m					: 4833678.73 EASTING (m): 626596.23 ELEV. (m) 94.77					′. (m) 94.77									
CONTRACTOR: Profile Drilling Inc. METHOD: Hollow Stem Auger + Mud Rotary + Split Spoon Sampling								Sampling											
BOREHOLE DIAMETER (cm): 20 WELL DIAMETER (cm): 5 SCR					SCR	EEN SL	OT #:	10 s4	ND TY	PE: 2	2	П		SEA		TYPE: 2			
SAMPLE TYPE AUGER DRIVEN					ORINO	G RENGTH		DYNAI WATE	AIC CO R		SHELBY SPLIT SPOON					IT SPOON			
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 (B 20	(kPa 80 1 N-VAL lows/30 40 6	● 20 160 UE 0mm) 60 80	P 20	CONTE (%) L W.C. 40 6	NT LL) 80	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS			
	Asphalt (50mm) compact to very loose, moist dark brown sand and gravel some organics with construction debris	- 0.5	94.5 -	12			13 ₂₁	5		1A 1B		79	15/1 <5/0	M&I PHCs/ BTEX PAHs		Field duplicate: MW1000 (M&I) Field duplicate: MW3000 (PAHs) 50mm monitoring well			
	(FILL) compact, wet, brown	- 1 - - - - 1.5	93.5 -	2						2		50	<5/1			was installed. water level measured on August 23, 2022: 8.70 mbg September 6, 2022: 8.63 mbg			
	SAND trace to some silt, trace clay	2	93 - 92.5 -		4					3		8	<5/1			September 21, 2022: 7.86 mbg			
		2.5		22						4A		100	<5/0	PHCs/		MW2000 (PHCs/BTEX,			
	stiff to hard, moist		92 -				14			4B			<5/1	VOCs		v 0 00, prij			
	trace to some gravel trace to some sand (TILL)	- 3 - - - 3.5	91.5 -		19		15 ■			5		83	<5/0			Bentonite			
	brown/grey	- 4 - 4 	91 - 90.5 -		3		12			6		71	<5/1						
		- - - - - - - - - - - - - - - - - - -	90 -		2		14			7		100	<5/1						
	grey	- 6 - 6.5	88.5 -																
		- - - - - - - - - - - - - - - - - - -	87.5 -		65/150		14 ■			8		100	30/0			Sand			
	very dense, moist, grey SANDY SILT some gravel to gravelly, some clay (TILL)	- 8	87 - 86.5 -	50	73/25 0/25 🔺		7			9 10		100 0	15/0			Screen + Sand			
		- 9	86 -																
														 	1_0.00	-22			
TERPADEY													September-2022						
TERRAPEA			REV	IEWEI	D BY:	SJS/ł	<c< td=""><td></td><td>PAG</td><td>E 1 OF</td><td>2</td><td> 00-</td><td></td></c<>		PAG	E 1 OF	2	00-							
						NEVIEWED BT: 3J3/NC													
CLIENT: HM RK (450 Dufferin) LP						P	PRO	JEC	CT NC).:	СТ	358	80.0)0			F	RECO	RD OF:
---	---	---	---------	------------------------------	------------------------------	--------------------------------------	---------------------------------------	---------------------	-------------------	------------------	----------------	------	----------------------------	-------------	----------------------	----------------------	-----------------------	----------------------	----------------
ADDRESS: 450 Dufferin Street																		MN	/101
CITY/PROVINCE: Toronto, ON		NO	RTH	IING	(m): 48	3336	678	.73		E	EAS	TIN	IG (m):	62659	96.23	ELEV.	(m) 94.77
CONTRACTOR: Profile Drilling Inc.				М	ETH	HOD:	Но	ollo	w Ste	em	Au	ger	+ N	Muc	d Ro	otary +	Split S	poon S	ampling
BOREHOLE DIAMETER (cm): 20 WELL DIA	METER	(cm):	5	S	CRE	EEN S	SLO	T #	: 10	SAI	ND T	TYPE	≣: 2	2			SE		TYPE: 2
	/EN		SHI			G SENGT	гн					00	NE			SHELB	<u>۲</u>		T SPOON
	DEPTH (m)	ELEVATION (m)	4	0 8(<u>N-4</u> Blows	kPa)) 12 /ALt s/30) 20 160 UE (0mm) 60 80	D	الا 20	CON (% PL W	TEN %) .C.	IT LL 80)	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
3 hard, moist, grey SANDY CLAYEY SILT some gravel to gravelly (TILL) (TILL) grey, weathered SHALE END OF BOREHOLE SHALE	<u>–</u> 9.5 – 10 – 11.5 – 11.5 – 12.5 – 13	ш 85.5 - 85.5 - 84.5 - 84.5 - 83.5 - 82.5 - 82.5 -	2 50	<u>0 40</u> //150 0/25			, , , , , , , , , , , , , , , , , , ,	20 8 11 13		60	80		. 8 11 12		<u>2</u> 0 100	(S)			
						LC	GG	ED	BY:	EL				I	DRII	LING	DATE:	11-Aug-	-22
TERRAPEX	TERRAPEX										ΜZ			'	NON	NITORI	NG DAT	E: 06-8	September-2022
						RE	EVIE	EWE	ED BY	': S	SJS	/KC	2	I F	PAG	E 2 OF	2		

CLIEN	IT: HM RK (450 Dufferin) LP					PRO	OJEC.	T NO.:	CT	3580	.00		-	R	ECO	RD OF:
ADDR	ESS: 450 Dufferin Street															V102
CITY/F	PROVINCE: Toronto, ON		NO	RTH	ING (r	n): 4833	3666.	05	E	AST	ING ((m):	6266 ⁻	18.70	ELEV	. (m) 94.32
CONT	RACTOR: Profile Drilling Inc.				MET	THOD: H		/ Stem	ı Auç	ger +	· Spl	it Sp	oon S	ampling	l .	
BORE	HOLE DIAMETER (cm): 20 WELL DIAM	METER	(cm):	5	SCF	REEN SLO	:# TC	10 SA	ND T	YPE:	2			SEA		TYPE: 2
SAMP	LE TYPE AUGER DRIV	EN I		SHE	CORIN	IG RENGTH		DYNA WATE	MIC C R				SHELB	Y _	SPL	IT SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4((kP 0 80 N-VA Blows/3	a)● 120 160 LUE ↓ 00mm) 60 80	P 20	CONTE (%) L W.C.	NT LL		SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	Asphalt (25mm) loose, black/dark brown, moist gravelly sand occasional clay pockets some organics, construction debris (FILL) loose to compact, moist to wet, brown SAND trace to some silt, trace clay firm to very stiff, moist, grey CLAYEY SILT trace to some gravel trace to some sand (TILL) dense, moist, grey SILTY SAND some gravel, trace clay (TILL) dense, moist, grey SANDY SILT some gravel to gravelly, some clay (TILL)		94 94 93.5 93 93 93 93 93 93 93 93 93 93 93 93 93		0 41 42		20 72 18 18 13 12 15 13 13 12 13 13 12 10 6 8	40 6	08 0	1, 1, 11 2 3 4 5 6 6 7 7 8 8 8 9 9 10 10 10		<u>и</u> 54 26 71 0 100 63 100 63 100 63 100 54 71	à 40/0 25/0 60/1 30/0 25/1 20/0 55/0 35/0 35/0	PHCs/ BTEX PAHS M&I		Bentonite 50mm monitoring well was installed. water level measured on August 23, 2022: 1.86 mbg September 6, 2022: 4.40 mbg September 21, 2022: 4.61 mbg Field Duplicate: MW4000 (PHCs/BTEX, VOCs, pH) Sand Screen + Sand
		-9 				LOG	GED I	BY: EL				DRIL	LING	DATE: 1	2-Aug	-22
	V TERRAPEX					INPU	T BY:	EL/E	MZ			MON	IITORI	NG DATI	E: 06-9	September-2022
			REV	EWE	D BY:	SJS	/KC		PAG	E 1 OF	2					

CLIEN	IT: HM RK (450 Dufferin) LP						PRC	JEC	CT N	10.:	СТ	358	0.0	0			F	RECO	RD OF:
ADDR	ESS: 450 Dufferin Street															MN	/102		
CITY/F	PROVINCE: Toronto, ON	RTHIN	G (m): 48	833	666	.05		6	EAS	TIN	G (m):	62661	18.70	ELEV.	(m) 94.32		
CONT	RACTOR: Profile Drilling Inc.			N	NETH	HOD	: H	ollo	w S	tem	Au	ger	+ S	Spli	t Sp	oon S	ampling)	
BORE	HOLE DIAMETER (cm): 20 WELL DIAI	METER	(cm):	5 8	SCRE	EEN	SLC) T #	: 10) SA	ND 1	TYPE	: 2				SEA		IYPE: 2
SAMP	LE TYPE AUGER DRIV	EN					тн		DY W			CON	NE		1	SHELB	Y		T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 8 (Blow	(kPa) 30 12 -VAL vs/30) 20 16 0E 0mm) 0 80	60) D	ا 20	CO PL 1 0 40	NTEN (%) W.C.	йт LL 9 80)	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
	very dense, moist, grey SANDY SILT some gravel to gravelly, some clay (TILL) grey, weathered SHALE END OF BOREHOLE	日 9.5 - 10 - 10.5 - 11 - 11.5	84.5 84.5 84.5 83.5 83.5	50/5		250		7 5 11	0 4				12 13 14		100 75 100	SV/T (ppm	LAB		
				· · · ·	•		OGG	GED	BY:	EL				ı	DRIL	LING [DATE: 1	2-Aug	-22
1	TERRAPEX			IN	IPU ⁻	ТΒ	/: E	L/E	ΜZ			N	NON	ITORI	NG DAT	E: 06-8	September-2022		
			R	FVI	=WF	DB	Y. 5	SJS	S/KC	;	F	PAG	F 2 OF	2		-			

CLIEN	T: HM RK (450 Dufferin) LP					PRO	DJECT	NO.:	СТ3	8580	.00		-	R	ECC	ORD OF:
ADDRE	ESS: 450 Dufferin Street					1000	000.0						0000	10.50		
	ROVINCE: Toronto, ON		NO	RIH	ING (m): 4833	683.6	02		AST	ING Crit	(m):	6266	13.52	ELEV	. (m) 94.65
DODEL) (ama);	5					Aug		Spi 2	πομ	000113			
BUREF			(cm):								<u> </u>					
SAMPL	AUGER DRIV			SHE	EAR STR	RENGTH		WATER	7110 C		: T		(new titl	e)		IT SPOON
GWL (m) GWL (m)	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	4((kPa) 0 80 1: N-VAL Blows/30	▶ 20 160 ₩E ↓ 0mm) 00 80	PL 20	ONTER (%) W.C.	NT LL	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	Asphalt (40mm)	- 0	94.5-		<u> </u>			40 00	,		Π	-	., .			Bentonite
	loose, moist, brown gravelly sand trace construction debris (FILL) stiff, moist, brown/dark brown	- 0.5 	94 -	5 • 8			9 13 8 9			1 24 28		25 54	130/1 115/0 95/0	PHCs/ BTEX PAHs <u>∖</u> M&I		50mm monitoring well was installed. water level measured on August 23, 2022;
	silty clay trace organics (FILL) loose, moist, brown	- ' - - - 1.5	93.5 -	-			-			20		-	110/0			5.17 mbg September 6, 2022: 4.93 mbg September 21, 2022: 4.92 mbg
	trace to some silt, trace clay soft to very stiff, moist, grey CLAYEY SILT	-2	92.5 -	8			20			3		50	125/1			
	trace to some sand (TILL)	17		18			4		67	135/1	PHCs/ VOCs					
			13		14 ■			5		42	90/0					
		- - - - -	90.5 -	6			13			6		75	70/0			
		- 5	90 -	▲ 6			13 ■			7		54	50/1		¥	
		- 	89 -	▲ 6			13			8		54	50/0			
		- - - - - - - - - - - - - - - - - - -	88.5 -	2			17			9		92	<5/0			
		14		9			1(b	100	65/0						
	dense to very dense, moist, grey SANDY SILT some gravel to gravelly, some clay (TILL)	- 7.5 - - - - - - - - - - - - - - - - - - -	87 -	-	41		5			1	1	94				
		- 8.5 	86 -		56		6 ■			12	2	92				
11-14-VEW	6.			•		LOG	GED B	Y: EL			╧	DRII	LING	DATE: 1	5 and	16-Aug-22
	TERRAPEX					INPU	T BY:	EL/E	MZ			MON	NITORI	NG DATE	: 06-	- September-2022
	V		REVI	EWED	BY:	SJS/	KC		PAG	E 1 OF	2					

CLIENT: HM RK (450 Dufferin) LP					PRC	JEC	T NO.	: C1	358	30.0	0			F	RECO	RD OF:
ADDRESS: 450 Dufferin Street															<u>MW</u>	103D
CITY/PROVINCE: Toronto, ON		NO	RTHING	i (m):	4833	683	.62		EAS	STIN	G (r	n):	62661	3.52	ELEV	(m) 94.65
CONTRACTOR: Profile Drilling Inc.			M	ETHO	DD: H	ollo	w Ste	m Aı	ıger	+ S	split	: Sp	oon S	ampling	9	
BOREHOLE DIAMETER (cm): 20 WELL DIA	METER	(cm):	5 SC	CREE	EN SLO	DT#	: 10 :	SAND	TYPI	E: 2				SEA		IYPE: 2
	'EN				NGTH				COI	NE		S		Y		T SPOON
	DEPTH (m)	ELEVATION (m)	40 80 	kPa) 0 120 VALUE s/300m 0 60	160 1m) 80	ام 20	CONT (% PL W.(ENT) C. LL 60 8		SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL	REMARKS
hard, moist, grey SANDY CLAYEY SILT some gravel to gravelly (TILL)	- 9.5 - 10 - 10.5 - 11 - 11.5 - 12 - 12.5 - 13	85	50/100 50/50 50/75 50/50			1				13 - 14 15 - 15 - 16		100 225 100				Sand Screen + Sand
grey weathered												100				
END OF BOREHOLE																
TERRAPEX	TERRAPEX							EMZ SJS	<u>-</u> S/K(2	C N F			DATE: 1 NG DAT	5 and E: 06-\$	16-Aug-22 September-2022

CLIEN	IT: HM RK (450 Dufferin) LP					PRO	OJE	CT NO.	: C1	F358	30.0	0			F	RECO	RD OF:
ADDR	ESS: 450 Dufferin Street															<u>MM</u>	/103
CITY/	PROVINCE: Toronto, ON		NO	RTHING	G (m):	4833	8683	.93		EAS	STIN	G (n	n): 6	626612	2.68	ELEV	. (m) 94.60
CONT	RACTOR: Profile Drilling Inc.			N	1ETHO	D: H	lollo	w Ster	n Aı	lger					-		
BORE	HOLE DIAMETER (cm): 20 WELL DIAI	METER	(cm):	5 S	CREE	N SLO	# TC	: 10 s	SAND	TYPE	E: 2	-			SEA		TYPE: 2
SAMF	PLE TYPE AUGER DRIV	EN I			RING STREN	IGTH		DYNA WATI	AMIC ER	CO	NE	_₽	SI			L SPL	IT SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 8	(kPa)● 30 120 VALUE √s/300m	<u>160</u> m) ▲		CONTI (%) PL W.C	ENT) C. LL		SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV	ABORATORY FESTING	NSTALLATION	REMARKS
	Straight drilled to 9.14 mbg to install the monitoring well	- 4.5 - 5.5 - 6.5 - 7.5 -	94.5 - 94 - 93.5 - 93 - 93.5 - 93 - 93 - 93 - 93 - 93 - 93 - 93 - 93	(Blow	rs/300m	m)	2	PL W.C	2. LL 60 8		SAMP	SAMP	RECO	SV/TC (ppm c	LABO		Bentonite 50mm monitoring well was installed. water level measured on August 23, 2022: Dry September 6, 2022: Dry September 21, 2022: Dry Sand Screen + Sand
		Ē	86 -														
		- 9	85.5														
															ATE: 4	6 4.1.~	22
	TEDDADEY				\vdash		ים דו	ыт: F		,					AIE: 1		-22 Sentembor 2022
	TERKAPEX			┝				2 IVI م ا م	-	_				3 DA 11	E: U0-	September-2022	
1	TERRAPEX					REVI		-υ Βλ:	21	5/KC	,	<u>р</u>	AGE	: 1 OF 2	2		

CLIEN	NT: HM RK (450 Dufferin) LP							PRC	JEC	T NC).: (СТЗ	580	.00			F	RECO	RD OF:
ADDF	RESS: 450 Dufferin Street														<u>MW</u>	/103I			
CITY/	PROVINCE: Toronto, ON	NO	RTH	ING (r	n): 4	833	683	.93		E	ASTI	NG	(m):	62661	12.68	ELEV.	(m) 94.60		
CONT	RACTOR: Profile Drilling Inc.					ME	THOE): H	ollo	v Ste	m /	Aug	er						
BORE	HOLE DIAMETER (cm): 20	WELL DIAN	IETER (cm):	5	SCF	REEN	I SLC) T #	10	SAN	ID TY	YPE:	2			SEA		TYPE: 2
SAMF	AUGER	DRIVE	N				IG			DYN	AM	IC C	ONE	<u> </u>		SHELB	Y _	SPLI	T SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTIO	NC	JEPTH (m)	ELEVATION (m)	4((E	AR ST (kP) 80 N-VA Blows/3	RENG 2a) 120_10 LUE 600mm	60 1)	▲ F	VVA CON (%	IER TEN ⁻ 6) .C.	T LL	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	sV/TOV ppm or %LEL) and mail	⊕ ABORATORY IESTING	VELL NSTALLATION	REMARKS
	END OF BOREHO	LE			20		60 8	80	20		60	80			RE	VS (pp	LA TE		
	TER			<u> </u>	1			GED T BY	BY:	EL /EN	ΛΖ					DATE: 1	6-Aug- E: 06-8	22 September-2022	

CLIEN	NT: HM RK (450 Dufferin) LP				F	PRO	JECT	NO.:	СТ	358	0.0	0			F	RECO	RD OF:
ADDF	RESS: 450 Dufferin Street													<u>MW</u>	103S		
CITY/	PROVINCE: Toronto, ON	RTHING	(m): 48	8336	685.0	9		EAS	TIN	IG (I	m):	62661	13.00	ELEV	. (m) 94.62		
CONT	RACTOR: Profile Drilling Inc.			M	ETHOD	: Ho	ollow	Sten	ו Au	iger							
BORE	HOLE DIAMETER (cm): 20 WELL D	IAMETER	R (cm):	5 S	CREEN	SLO)T #:	10 s/	AND	TYPE	: 2	2			SE		TYPE: 2
SAMF		IVEN				тн		OYNA WATE	MIC	CON	١E	_	5	SHELB	<u>۲</u>	I SPL	IT SPOON
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	40 8(+ N-4 (Blows	kPa) 120 16 ALUE + s/300mm)	i0)▲	C PL 20	W.C.	NT	n	SAMPLE NO.	SAMPLE TYPE	RECOVERY (%)	SV/TOV (ppm or %LEL)	LABORATORY TESTING	WELL INSTALLATION	REMARKS
	END OF BOREHOLE	94.5 - 94 - 93.5 - 93 - 93.5 - 92.5 - 92 - 91.5 - 91.5 - 90 - 89.5 - 89 -							0	SAME	SAME	REC	SV/TC			Bentonite Somm monitoring well was installed. water level measured on August 23, 2022: Dry September 6, 2022: 5.90 mbg September 21, 2022: 5.41 mbg Sand Screen + Sand	
	6			1		CGG	ED B	Y: El		_			DRIL	LING [DATE: 1	I6-Aug	-22
	TERRAPE	X			IN	IPUT	FBY:	EL/E	MZ			N	NON	IITORII	NG DAT	E: 06-	September-2022
	72100112	R	EVIE	WED	BY:	SJS	S/KC	;	F	PAG	E 1 OF	[:] 1					

ADDRESS: 400 Liftein Street MORTHING (m; 433657.17) EASTING (m; 263952) ELEV (m) 94.29 CONTRACTOR: Forfile Diming Inc. INTHIO: Hold Street (m) 42.39 ELEV (m) 94.29 ELEV (m) 94.29 CONTRACTOR: Forfile Diming Inc. INTHIO: Hold Street (m) 20 Security (m) 42.39 Security (m) 42.39 BOREHOLE DIMETER (m): 20 DEVEN CONTRACTOR: Security (m) 42.39 Security (m) 42.39 Image: Solid Soli	CLIEN	IT: HM RK (450 Dufferin) LP					PRC	JECT	NO.:	СТЗ	580.	00			F	RECO	RD OF:
CITUREQUEXCUE Toronto, O.M. INORTHING (m): 433867.17 EASTNO: Em: 562599.29 EL: (m): 42.9 CONTRACTOR: Profile Dilling Inc. INTERNO: Em: 562599.29 EL: (m): 42.9 CONTRACTOR: Profile Dilling Inc. INTERNO: Em: 562599.29 EL: (m): 42.9 CONTRACTOR: Profile Dilling Inc. INTERNO: Em: 562599.29 EL: (m): 42.9 CONTRACTOR: Profile Dilling Inc. INTERNO: Em: 562599.29 EL: (m): 42.9 CONTRACTOR: Profile Dilling Inc. INTERNO: Em: 562599.29 EL: (m): 42.9 CONTRACTOR: Profile Dilling Inc. INTERNO: Em: 562599.29 EL: (m): 42.9 CONTRACTOR: Profile Dilling Inc. INTERNO: Em: 562599.29 EL: (m): 42.9 CONTRACTOR: Profile Dilling Inc. INTERNO: Em: 562599.29 EL: (m): 42.9 CONTRACTOR: Profile Dilling Inc. INTERNO: Em: 562599.29 EL: (m): 42.9 ES: 40.9 INTERNO: Em: 562599.29 INTERN	ADDR	ESS: 450 Dufferin Street															104D
CONTRACTOR: Folde Dilling Inc. METHOD: Folde Stem Auger * split Spoon Samplary BOREHOLE DUMETER (m): 5 Security Stem Auger * split Spoon Samplary Split Spoon Samplary SOLL BREMOLE DUMETER (m): 5 Security Stem Auger * split Spoon Samplary Split Spoon Samplary SOLL BREMOLE TYPE Auger * Split Spoon Samplary Split Spoon Samplary Split Spoon Samplary Split Spoon Samplary SOLL BREMOLE TYPE Auger * Split Spoon Samplary Split S	CITY/I	PROVINCE: Toronto, ON		NO	RTHIN	IG (m)	: 4833	657.1	7	E	ASTI	NG (m):	62659	99.29	ELEV	. (m) 94.29
BORHHOLD DIMALTER (CR): 20 WILL DIMALTER (CR): 50 Solution (TPE - Z) Solution (TPE - Z) SWMPE TYPE Auges: Company to provide the solution of the	CONT	RACTOR: Profile Drilling Inc.			_	METH	IOD: H	ollow	Stem	Aug	jer +	Spli	t Sp	oon S	ampling]	
SAMUE 11/PE Alogen ORIGINATION Bit Mark 10000 Diversion of the second of the s	BORE	HOLE DIAMETER (cm): 20 WELL DIAM	METER	(cm): :	5	SCRE	EN SLC	DT #: 1	10 SA		YPE:	2			SEA		TYPE: 2
Bit SOLL DESCRIPTION Image: Solution of the second se	SAMP	LE TYPEAUGERDRIVE	=N		SHEA	DRING R STRI	ENGTH		VNAN WATEF	AIC C				SHELB	Y		IT SPOON
Image: state of the s	GWL (m) GWL (m)	SOIL DESCRIPTION	EPTH (m)	EVATION (m)	40 (Blc	(kPa) 80 12 N-VALU ws/300	● 160 /E • ▲	C PL	ONTEN (%) W.C.	IT LL	MPLE NO.	MPLE TYPE	ECOVERY (%)	/TOV om or %LEL)	BORATORY STING	ELL STALLATION	REMARKS
Note: Note: <th< td=""><td>S S</td><td>Acabalt (10mm)</td><td></td><td>Ш</td><td>20</td><td>40 60</td><td>0 80</td><td>20</td><td>40 60</td><td>80</td><td>AN AN</td><td>SA</td><td>20</td><td>S d</td><td>52</td><td>₿Ë</td><td>Bentonite</td></th<>	S S	Acabalt (10mm)		Ш	20	40 60	0 80	20	40 60	80	AN AN	SA	20	S d	52	₿Ë	Bentonite
Imm to Suff, molet, drown/place clays sin (FILL) 1 0 1 0 10 10 10 10 0		loose, moist, dark brown gravelly sand with brick fragments (FILL)	- 0.5	94 – 93.5 –	9			71 16			1B 1C		.79	50/0 50/0 40/1	M&I PHCs/ BTEX PAHs		50mm monitoring well was installed. water level measured
firm to slif, molst CLAYEY SILT 22.5 92.5 13 14 13 4 71 200 91.5 10 mg 100 some gravel trace to some gravel (TILL) -2.5 92.5 -4 12 -4 -5 -5 -6 -6 -6 -6 -6 -7 -7 -7 -7 -7 7 -7 10 8 <td></td> <td>clayey silt trace organics (FILL)</td> <td>- 1 - 1 </td> <td>93 -</td> <td>5</td> <td></td> <td></td> <td>19 22</td> <td></td> <td></td> <td>2</td> <td></td> <td>17</td> <td>35/0</td> <td></td> <td></td> <td>on August 23, 2022: 8.07 mbg September 6, 2022: 5.18 mbg September 21, 2022:</td>		clayey silt trace organics (FILL)	- 1 - 1 	93 -	5			19 22			2		17	35/0			on August 23, 2022: 8.07 mbg September 6, 2022: 5.18 mbg September 21, 2022:
Image: construction of the set of t		firm to stiff, moist CLAYEY SILT trace to some gravel trace to some sand	2	92.5 -				16			3B			5/1	PHCs/ BTEX		15.10 mbg
		(TILL) brown/grey	91.5 -	23			13 ■			4		71	20/0				
compact to dense, moist, grey 5,5 89,5 4 14 7 100 5/0 grey 5,5 88,5 4 14 7 100 5/0 grey 5,5 88,5 4 9 33 5/1 9 6 6,5 87,5 16 7 100 5/0 9 6 6,5 87,5 7 7 10 8 5/1 PHCs/ Some gravel to gravelly, some clay 7,5 85,5 90,75 10 83 5/1 Sand Sandy (TILL) 8,5 85,5 90,75 14 11 100 83 Sand Sereen + Sand 14 11 100 83 12 44 12 hard, moist, grey 8,5 85,5 90,77 16 12 44 11 100 bard 9 9 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 <			- 3.5	91 -	12			14			5		100	<5/1			
compact to dense, moist, grey 5.5 88.5 16 14 8 54 <5/1			-4	90.5 -	14			12 ■			6		54	<5/1			
grey 5.5 88.5 9 14 8 54 <5/1			-5	89.5	6			14			7		100	5/0			
compact to dense, moist, grey SANDY SILT some gravel to gravelly, some clay (TILL) 7 87.5 29 7 10 83 11 Sand hard, moist, grey (TILL) 7.5 86.5 33 4 11 10 83 11 Sand bard, moist, grey (TILL) 86.5 9 33 5/1 Sand Screen + Sand bard, moist, grey (TILL) 85 86.5 33 4 11 100 83 11 Screen + Sand bard, moist, grey (TILL) 8.5 80/75 16 12 44 11 100 12 44 11 100 12 14 11 100 12 14 12 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 14 12 12 14 12 12 12 12 12 12 12 12 12		grey	- 5.5	88.5 -	9			14			8		54	<5/1	PHCs/ VOCs		
compact to dense, moist, grey SANDY SILT some gravel to gravelly, some clay (TILL) 67.5 87-29 7 10 83 Sand Arrow of the set of the			- 6.5	88 -	10	6		4			9		33	5/1			
hard, moist, grey SANDY CLAYEY SILT some gravel to gravelly (TILL) 86- 33 4 11 100 Image: Solution of the second		compact to dense, moist, grey SANDY SILT some gravel to gravelly, some clay (TILL)	87 -	29			7			10		83				Sand	
hard, moist, grey SANDY CLAYEY SILT some gravel to gravelly (TILL)			-8	86.5	33 4			4			11		100				Screen + Sand
Image: Construction of the second s		hard, moist, grey SANDY CLAYEY SILT some gravel to gravelly (TILL)	- 8.5	85.5 -	50/	75 🔺		16			12		44				
TERRAPEX INPUT BY: EL/EMZ MONITORING DATE: 06-September-2022							LOGO	GED B	Y: EL					LING	DATE: 1	7-Aua	-22
		TERRAPEX				F	INPU	T BY:	EL/E	MZ			MON	ITORI	NG DATI	E: 06-	September-2022
REVIEWED BY: SJS/KC PAGE 1 OF 2				REVI	EWED	BY: \$	SJS/	KC		PAG	E 1 OF	2					

CLIENT: HM RK (450 Dufferin) LP				PRO	DJECT NO.:	CT3580	0.00	F	RECORD OF:
ADDRESS: 450 Dufferin Street		_							<u>MW104D</u>
CITY/PROVINCE: Toronto, ON		NO	RTHING ((m): 4833	657.17	EAST	TING (m):	626599.29	ELEV. (m) 94.29
CONTRACTOR: Profile Drilling Inc.			ME	THOD: H	ollow Stem	Auger +	+ Split S	poon Sampling)
BOREHOLE DIAMETER (cm): 20 WELL DIAM	IETER ((cm): 🖞	5 sc	REEN SLO	DT #: 10 SA	ND TYPE:	2	SEA	ALANT TYPE: 2
SAMPLE TYPE AUGER DRIVE	IN		CORI	NG			E 🚺	SHELBY _	SPLIT SPOON
	DEPTH (m)	ELEVATION (m)	SHEAR S (kl 40 80 	120 160 120 160 ALUE ' '300mm) 60 80	WATER CONTEN (%) PL W.C. 20 40 60	K NT LL []	SAMPLE NO. SAMPLE TYPE RECOVERY (%)	SV/TOV (ppm or %LEL) (the main main main main main main main main	REMARKS NSTALLATION NSTALLATION
hard, moist, grey SANDY CLAYEY SILT some gravel to gravelly (TILL)	- 9.5	85 - 84.5 - 84 -	8	2/275	11	1	3 76		
END OF BOREHOLE		84_							
TERRADEV						- MZ		NITORING DATE: 1	r-Aug-∠∠ F: 06-September-2022
TENNAPEA	TERRAPEX								

CLIEN	ง⊤: HM RK (450 Dufferin) LP				PRO	DJECT NO.:	CT3580.0	00	F	RECORD OF:
ADDR	ESS: 450 Dufferin Street									<u>MW104S</u>
CITY/	PROVINCE: Toronto, ON		NO	RTHING (n	n): 4833	656.49	EASTIN	NG (m):	626599.15	ELEV. (m) 94.30
CONT	RACTOR: Profile Drilling Inc.			MET	HOD: H	lollow Sten	n Auger			
BORE	HOLE DIAMETER (cm): 20 WELL DIA	METER	R (cm):	5 SCR	EEN SLO	DT #: 10 s	AND TYPE: 2	2	SE	ALANT TYPE: 2
SAMF		'EN		CORIN	G RENGTH	DYNA	MIC CONE	۽ ا	SHELBY	
GWL (m) SOIL SYMBOL	SOIL DESCRIPTION	DEPTH (m)	ELEVATION (m)	(kPa 40 80 1 	20 160 .UE ↓ .Omm) 60 80	CONTE (%) PL W.C	. LL SO 80	SAMPLE TYPE RECOVERY (%)	SV/TOV (ppm or %LEL) (Dpm or %	NOLT REMARKS
	Straight drilled to 4.0 mbg to install the monitoring well	-0.5 -1 -1.5 -2.5 -3 -3.5	94 - 93.5 - 93 - 92.5 - 92.5 - 91.5 - 91.5 - 91 - 91 -							Bentonite Sand Screen + Sand 50mm monitoring we was installed. water level measured on August 23, 2022: Dry September 6, 2022: 2.98 mbg September 21, 2022: 1.78 mbg
		-			+ +					
	6				LOG	GED BY: E	L		LING DATE:	17-Aug-22
	TERRAPEX				INPU	T BY: EL/E	EMZ	MON	ITORING DAT	E: 06-September-2022
					REVI	EWED BY:	SJS/KC	PAG	E 1 OF 1	

Project #: 268429.002

Logged By: MG

Project: Preliminary Geotechnical Investigation

Client: Hullmark Developments

Location: 450 Dufferin Street, Toronto, Ontario

Drill Date: February 20, 2020

		SUBSURFACE PROFILE							S	AMPLE				
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-		Ground Surface	94.29											
		∖ Asphalt ∖~150 mm	93.53		SS	1	91	32			21.8			
1-	Ħ	Fill	0.76		SS	2	54	6			22.2			
	111	Brown Sand and Gravel, damp, dense	92.77 1.52		<u> </u>	2	0.2	25			15.0			
2	H H	Brown Silty Sand, trace clay, trace glass fragments, moist, dense		Riser and a straight	55	3	83	25			15.9			
3-	Ħ	Silty Clay Till Greyish brown Silty Clay, some			55	4	87	39			17.0			
-	لمبلد ومريد	sand, trace, gravel, APL, firm	90.48		55	5	100	16			17.0			
4	H	Becoming very stiff to hard	3.81		SS	6	58	21			13.1			
5_					SS	7	18	20	φ		15.7			
	Ħ													
6	Ħ				SS	8	58	16			10.9			
7-	Ħ				00	0		10						
	12		86.67											
8-		Gravel Grev Gravel very dense	7.62	San	SS	9	9	>50	6					
			05.45	Silca										
9_	221	No Recovery	<u>85.15</u> 9.14	=	SS	10	0	>50						
10-		End of Borehole												
-		Borehole terminated at 9.14 mbgs		well was										
11		onsplit spoon refusal. At drilling		February										
		measured at 8.80 mbgs.		27, 2020.										
12														
 13														
-														
14														
	С	ontractor: Geo-Environmental	Drilling	nc.	<u> </u>			I	Grade	Elevation	n: 94.2	9 mas	<u> </u>	
	D	rilling Method: Hollow Stem Au	uger/ Sr	lit Spoon					Top of	Casing E	levat	ion: 94	.20 mas	sl
	и	/ell Casing Size: 51 mm	- 1	·					Sheet:	- 1 of 1				

Project #: 268429.01 Logged By: MG Location: 450 Differin Street, Toronto, Ontario Differin Street, Toronto, Ontario Description Description Description Page definition Page definition Page definition Sand a gravel fill, brown, trace gravel, moist 0.76 Sand a gravel fill, brown, trace gravel, moist 0.76 Sand a gravel fill, brown, trace gravel, moist 0.76 Grave, Start Sind Till Bage definition Sand Still Sind Till Bage definition Grave, Start Sind Till Bage definition Sand Still Sind Till Bage definition Grey, trace gravel, moist 7.62 Sand Still Sind Till Grave Still Sind Till Grey, trace gravel, moist to wet at 3.05 Sind Sind Till Grey, trace gravel, moist to wet at 3.05 Sind Sind Till Grey, trace gravel, moist to wet at 3.05 S				Log	of E	3 0	reh	ole:	MW02			
Project: Phase II Environmental Site Assessment Light: Hullmark Developments Location: 450 Dufferin Street, Toronto, Ontario DII Date: February 20, 2007 SUBSURFACE PROFILE SAMPLE Subsurface PROFILE Subsurface Provide and street, February 20, 2007 Subsurface Provide and street, February 2				Project	#: 2 6	842	9.00	1		Logged By	/: MG	
Client: Hullmark Developments Location: 450 Dufferin Street, Toroto, Ontario Drill Date: February 20, 2020 SUBSURFACE PROFILE SAMPLE Control of the street of the str		D		Project:	Pha	se II	Env	ironmeı	ntal Site As	sessment		
Location: 450 Dufferin Street, Toronto, Ontario Drill Date: February 20, 2020 SUBSURFACE PROFILE SAMPLE SAMPLE OPTION 0 0		r	INCHIN	Client:	Hullm	nark	Deve	elopmer	nts			
Drill Date: February 20, 2020 SUBSURFACE PROFILE SAMPLE U Description B				Locatio	n: 45	0 D	ufferi	n Stree	t, Toronto, (Ontario		
SUBSURFACE PROFILE SAMPLE SUBSURFACE PROFILE Description Description <thdescription< th=""> Description <thdescription< th="" thd<=""><th></th><th></th><th></th><th>Drill Dat</th><th>te: Fe</th><th>əbru</th><th>ary 2</th><th>0, 2020</th><th>)</th><th></th><th></th></thdescription<></thdescription<>				Drill Dat	te: Fe	əbru	ary 2	0, 2020)			
Image of the second s			SUBSURFACE PROFIL	.E						SAMPLE		
Offmon Ground Surface 94.46 Asphalt 0.00 Fill Sand and gravel fill, brown, trace gravel, moist Silty Sand Till 93.70 Brown, trace gravel, moist 0.234 Grey, race gravel, moist 1.52 Orange mottling, trace sand from 2.29 mbgs to 3.05 mbgs 63 SS5 0/0 Grey, moist to wet at 3.05 89.12 63 SS5 0/0 Grey, moist to wet at 3.05 89.12 53 SS10 0/0 Grey, trace gravel, moist 88.36 0/0 43 SS7 0/0 Grey, trace gravel, moist to wet at 3.05 89.12 53 SS10 0/0 pH, Grain Size Grey, trace gravel, moist to wet at 3.05 89.12 53 SS10 0/0 pH, Grain Size Grey, trace gravel, moist to wet at 3.05 89.32 0/0 53 SS10 0/0 pH, Grain Size Sandy Silt Till Grey, trace gravel, moist to wet 86.84 7.62 SS10 0/0 pH, Grain Size Grap Lepos Silt Till Sandy Silt Till	Depth	Symbol	Description	Measured Depth (m)		Monitoring		Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis	
1 Fill Sand and gravel fill, brown, trace glass pieces, damp, no dour or staining 93.70 97.76 SS1 70/05 Metals 3 SS2 0/0 pH 6 2.94 Sitty Sand Till 57 SS3 0/0 9 0 75 SS3 0/0 pH 11 Grey-brown, trace gravel, moist 1.52 67 SS4 0/0 PHC, VOC, PAHs 0 Grey, moist to wet at 3.05 mbgs 63 SS5 0/0 63 SS5 0/0 13 4 Grey, moist to wet at 3.05 88.36 61.0 99.12 73 SS9 0/0 14 53 Grey, trace gravel, moist to wet 88.36 61.0 73 SS9 0/0 23 7 Clayey Silt Till 5.33 86.84 7.62 SS11 0/0 9H, Grain Size 24 6 Sandy Silt Till 6.823 Groundwater measured using a RE to glag 2 equiped with a combustible glag 2 equipe	0 ± 0		Ground Surface	94.46	-	F	9			70/0		
3 1			Fill	93.70				50	SS1	70/6	Metals	
Silty Sand Till Silty Sand Till Brown, trace gravel, moist 1.52 Gray Silt Till Gray Silt Till Grey, moist 0.00 Grey, moist to wet at 3.05 89.12 Grey, trace gravel, moist 63 SSS 0/0 Grey, trace gravel, moist 63 Silty Clay Till 5.33 Grey, trace gravel, moist 88.36 Grey, trace gravel, moist to 86.84 Grey, trace gravel, moist to 86.84 Groundwater 53 Method: Split Spoon/ Hollow Stem 86.84 Groundwater 65 Method: Split spoon/ Hollow Stem 8.23 Drilling Method: Split spoon/ Hollow Stem "Soli vapur concentrations photoinization detector (PID). Well Casing Size: 5.08 cm Photoinization detector (PID).		1.	Sand and gravel fill, brown, trace glass pieces, damp, no odour or staining	0.76 92.94	-	1111		33	SS2	0/0	рН	
8 Image within Grey-brown, trace gravel, moist Grey work, trace gravel, moist Grey, moist to wet at 3.05 mbgs Grey, moist to wet at 3.05 mbgs 13 4 Grey, moist to wet at 3.05 mbgs 89.12 33 SS6 0/0 16 5 Sility Clay Till 5.33 89.12 43 SS7 0/0 10 Grey, moist to wet at 3.05 mbgs 67 SS8 0/0 43 SS7 0/0 10 Grey, trace gravel, moist 88.36 67 SS8 0/0 67 SS8 0/0 10 Grey, trace gravel, moist to wet 6.10 90 67 SS8 0/0 91 20 6 Sandy Silt Till 5.33 86.84 73 SS9 0/0 21 Frace gravel and sand, moist 86.84 7.62 50 SS11 0/0 91 23 Find of Borehole 8.23 82.21 50 SS11 0/0 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 <td< td=""><td>5 6 1 7 2</td><td>7</td><td>Silty Sand Till Brown, trace gravel, moist</td><td>1.52</td><td></td><td>1111</td><td></td><td>57</td><td>SS3</td><td>0/0</td><td></td></td<>	5 6 1 7 2	7	Silty Sand Till Brown, trace gravel, moist	1.52		1111		57	SS3	0/0		
10 Orange mottling, trace sand from 2.29 mbgs to 3.05 mbgs 13 4 14 Grey, moist to wet at 3.05 mbgs 15 89.12 17 5 18 Silty Clay Till 19 6 10 Grey, trace gravel, moist 10 Grey, trace gravel, moist to wet 11 Silty Clay Till 12 Grey, trace gravel, moist to wet 12 Grey, trace gravel, moist to wet 12 Grey, trace gravel, moist to wet 12 Grey, trace gravel and sand, moist to wet 13 SS10 0/0 14 Groundwater measured to 5.00 mbgs on March 13 End of Borehole 13 SOI 14 Solit spoon/ Hollow Stem photoionization detector (PID). 11 Grade Elevation: 94.356 12 Top of Casing Elevation: 94.366 14 Sheet: 1 of 1	8 9 10 10 3		Grey-brown, trace gravel, moist			1111	onite -	67	SS4	0/0	PHC, VOC, PAHs	
13 4 Grey, moist to wet at 3.05 33 SS6 0/0 14 14 14 14 14 14 14 14 15 mbgs 13 SS6 0/0 13 13 SS6 0/0 16 5 Silty Clay Till 5.33 89.12 13 SS7 0/0 19 6 Sandy Silt Till 5.33 88.36 6.10 73 SS9 0/0 20 Grey, trace gravel, moist to wet 86.84 73 SS9 0/0 pt 21 7 Clayey Silt Till 7.62 SS11 0/0 pt Grain Size 26 8 End of Borehole 8.23 S01 vapour concentrations measured at 5.60 S01 SS11 0/0 31 9 9 Solid vapour concentrations graze and at combustible gas indicator (CG) and a photoionization detector (PID). Grade Elevation: 94.455 Top of Casing Elevation: 94.366 20 Solid vapour concentrations graze and a combustible gas indicator (CG) and a photoionization detector (PID). Shet: 1 of 1			Orange mottling, trace sand from 2.29 mbgs to 3.05 mbgs			1111	Bento	63	SS5	0/0		
10 10 <td< td=""><td>13 4 14 1 15 1</td><td>1</td><td>Grey, moist to wet at 3.05 mbgs</td><td></td><td>iser 7</td><td></td><td></td><td>33</td><td>SS6</td><td>0/0</td><td></td></td<>	13 4 14 1 15 1	1	Grey, moist to wet at 3.05 mbgs		iser 7			33	SS6	0/0		
18 5.33 Silty Clay Till 5.33 88.36 67 SS8 0/0 20 6 Sandy Silt Till 6.10 73 SS9 0/0 21 7 Silty Clay Till 6.10 73 SS9 0/0 22 7 SS1 Silty Clay Till 73 SS9 0/0 24 86.84 Sandy Silt Till 7.62 50 SS11 0/0 26 8 Clayey Silt Till 7.62 86.22 50 SS11 0/0 27 8 End of Borehole 8.23 Groundwater measured at 5.60 50 SS11 0/0 31 9 Solor And the set of	16 <u>5</u> 17 <u>5</u>			89.12				43	SS7	0/0		
20 1 Sandy Silt Till Grey, trace gravel, moist to wet 6.10 73 SS9 0/0 23 7 86.84 53 SS10 0/0 pH, Grain Size 26 8 Clayey Silt Till Trace gravel and sand, moist 7.62 50 SS11 0/0 27 8 End of Borehole 8.23 50 SS11 0/0 31 9 9 Solution Solution 6.20 SS11 0/0 31 9 Solution Solution Solution Solution Solution Solution Solution 29 9 Solution Solution Solution Solution Solution Solution Solution 29 9 Solution	18-1 19-1 20-1 6		<i>Silty Clay Till</i> Grey, trace gravel, moist	5.33 88.36			and 🔺	67	SS8	0/0		
23 7 7 7 8 86.84 60 53 SS10 0/0 pH, Grain Size 26 8 Clayey Silt Till 7.62 86.22 50 SS11 0/0 pH, Grain Size 27 8 End of Borehole 8.23 50 SS11 0/0 pH, Grain Size 28 End of Borehole 8.23 Groundwater measured at 5.60 50 SS11 0/0 30 9 Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a photoionization detector (PID). Grade Elevation: 94.455 Top of Casing Elevation: 94.366	20 21 22		Sandy Silt Till Grey, trace gravel, moist to wet	6.10	creen _		Silica S	73	SS9	0/0	_	
26 8 Clayey Silt Till Trace gravel and sand, moist 7.62 86.22 50 SS11 0/0 28 End of Borehole 8.23 Groundwater measured at 5.60 mbgs on March 6, 2020. 50 SS11 0/0 30 9 Scouthwater Measured at 5.60 Groundwater measured at 5.60 50 SS11 0/0 31 9 Note: Groundwater Measured at 5.60 Soil vapour concentrations measured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and a photoionization detector (PID). Grade Elevation: 94.455 Top of Casing Elevation: 94.366 Sheet: 1 of 1	23 7 24 2 25 4			86.84	0 0			53	SS10	0/0	pH, Grain Size	
28 End of Borehole 0.20 0 29 9 30 Groundwater 31 31 Groundwater 32 Note: Groundwater Contractor: Geo-Environmental Drilling Inc, Note: Grade Elevation: 94.455 Drilling Method: Split spoon/ Hollow Stem measured using a RKI Eagle 2 Grupped with a combustible gas Well Casing Size: 5.08 cm photoionization detector (PID). Sheet: 1 of 1	26 - 8 27 - 8	-11	Clayey Silt Till Trace gravel and sand, moist	7.62 86.22			tonite -	50	SS11	0/0	_	
Contractor: Geo-Environmental Drilling Inc, Note: Grade Elevation: 94.455 Drilling Method: Split spoon/ Hollow Stem measured using a RKI Eagle 2 Top of Casing Elevation: 94.366 Well Casing Size: 5.08 cm photoionization detector (PID). Sheet: 1 of 1	28 29 30 31 31 32 4	B B B B B B C C C C C C C C C C C C C C										
Drilling Method: Split spoon/ Hollow Stemmeasured using a RKI Eagle 2 equipped with a combustible gas indicator (CGI) and aTop of Casing Elevation: 94.366Well Casing Size: 5.08 cmphotoionization detector (PID).Sheet: 1 of 1	Conti	racto	r: Geo-Environmental Drilling Inc,	Vote: Soil vapo	ur cor	ncent	rations	; }	Grade Ele	evation: 94.455	5	
Well Casing Size: 5.08 cmphotoionization detector (PID).Sheet: 1 of 1	Drillii	ng Me	ethod: Split spoon/ Hollow Stem	measured equipped w ndicator (C	using vith a CGI) a	a RK comb nd a	l Eagl	e 2 e gas	Top of Ca	sing Elevatior	n: 94.366	
	Well	Casir	ng Size: 5.08 cm	onotoioniza	ation c	letec	tor (Pl	U).	Sheet: 1 c	of 1		

	Log of Borehole: MW03												
			Project	#: 268	429.001			Logged By	: MG				
	D		Project:	Phase	e II Envi	ronmei	ntal Site Ass	sessment					
			Client: H	lullma	rk Deve	lopmer	nts						
			Locatio	n: 450	Dufferii	n Stree	t, Toronto, (Ontario					
			Drill Dat	e: Feb	oruary 2	1, 2020)						
		SUBSURFACE PROFIL	-E				1	SAMPLE					
Depth	Symbol	Description	Measured Depth (m)	Monitorina	Well Details	Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis				
0 0		Ground Surface	94.67										
		Aspnait Fill	0.00			67	SS1	45/0					
		Sand and gravel fill, brown, trace clay, trace glass and brick fragments, damp, no		er	ntonite -	53	SS2	20/1	PAHs, Metals				
0 6 7 7		staining, organic odour from 0.76 mbgs to 1.52 mbgs	92.38	Ris	Be	43	SS3	0/0					
8-1 9-1 10-1-3		Slity sand fill at 1.52 mbgs, brown, trace gravel and rootlets, moist from 1.52 mbgs <i>Clayey Silt Till</i>	2.29	u		73	SS4	70/2	PHCs, VOCs				
		Clayey Silt Till Brown, trace gravel, damp, brown mottling from 2.29	90.86	Scree		77	SS5	0/0					
13 4 14 1		mbgs, moist Silty Clay Till	3.81		a Sand	60	SS6	0/0					
16 16 17 17	17 77	Grey, trace gravel, moist, malleable from 3.81 mbgs to 6.10 mbgs		Grour	ndwater	77	SS7	0/0					
18-1 19-1 20-1-6		Moist to wet from 6.10 mbgs to 6.86 mbgs		meas 2.18 n Febru 20	ured at nbgs on Jary 27, 020	73	SS8	0/0					
20 21 22	11		87.81			63	SS9	0/0					
23 7 24 7 25 7		<i>Silty Sand Till</i> Grey, trace gravel, moist	6.86			63	SS10	0/0					
26 8 27		End of Porcholo	86.44 8.23				SS11	0/0					
28 29 30 31 31 32 4	End of Borehole 0.20 9												
Cont	racto	r: Geo-Environmental Drilling Inc.	Note:		ontration -		Grade Ele	vation: 94.668					
Drillin	ng Me	ethod: Split spoon/ Hollow Stem	measured equipped w indicator (C	ui conce using a /ith a co CGI) and	RKI Eagle mbustible	e 2 e gas	Top of Ca	sing Elevation	: 94.602				
Well	Casir	ng Size: 5.08 cm	photoioniza	ation det	tector (PII	D).	Sheet: 1 o	f 1					

	Log of Borehole: MW04												
			Project a	#: 268429	.001			Logged By	: MG				
	D		Project:	Phase II	Envi	ronmer	ntal Site As	sessment					
	٢	INCHIN	Client: ⊦	lullmark E	Deve	lopmer	nts						
			Locatior	ı: 450 Du	fferir	n Street	t, Toronto, (Ontario					
			Drill Dat	e: Februa	ry 24	4, 2020	1						
		SUBSURFACE PROFIL	.E					SAMPLE					
Depth	Symbol	Description	Measured Depth (m)	Monitoring Well Details		Recovery (%)	Sample ID	Soil Vapour Concentration* (ppm) CGI/PID	Laboratory Analysis				
$\begin{array}{c} \pi \\ 0 \\ 1 \\ 2 \\ 2 \\ \end{array}$		Ground Surface Asphalt Fill	94.67 0.00		•	47	SS1	75/1					
		Sand and gravel fill, brown, moist, no odour or staining Trace brick fragments and	92.15		ntonite ⁻	47	SS2	85/3	PAHs, Metals				
0 6 7 7 2	7	rootlets at 0.76 mbgs, moist, organic odour from 0.76 mbgs to 1.52 mbgs	1.52	Rise	Be	57	SS3	70/3	PHCs, VOCs				
8 9 10 10 3	1	<i>Clayey Silt Till</i> Brown, trace gravel, moist from 1.52 mbgs to 2.29 mbgs				53	SS4	30/3	Grain Size				
10 11 12		Grey at 3.05 mbgs, moist to wet from 3.05		Scree	◀	70	SS5	0/1					
13 - 4 14 - 1 15 - 1	11		90.10		a Sand	30	SS6	0/1					
16 - 5 17 - 5		Silty Clay Till Grey, trace gravel, wet from 4.57	4.57 89.34		Silic		SS7	0/2					
18-1 19-1 20-1 6	11	Clayey Silt Till Grey, trace gravel, wet	5.33 88.57	well wa destroye the time	as dat of		SS8	0/0					
21 22 23 24 25 26 26 27 8 27	0 0												
28 29 30 31 32	3 - 1 -												
Cont	racto	<i>r:</i> Geo-Environmental Drilling Inc.	Note: * Soil vano	Ir concentra	itions		Grade Ele	vation: 94.668					
Drillii	Drilling Method: Split spoon/ Hollow Stem equipped with a combustible gas indicator (CGI) and a												
Well	Well Casing Size: 5.08 cmcontrol control cont												

Project #: 268429.002

Logged By: MG

Project: Preliminary Geotechnical Investigation

Client: Hullmark Developments

Location: 450 Dufferin Street, Toronto, Ontario

Drill Date: February 21, 2020

		SUBSURFACE PROFILE							S	AMPLE				
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-		Ground Surface	94.70											
-	鏸	Asphalt ~150 mm	93.94	18	SS	1	95	15	7		17.3			
1-		Fill	0.76		SS	2	66	6			38.6			
_		Brown Sand and Gravel, trace silt, trace glass and brick fragments,	93.18 1.52		SS	3	75	7			22.5			
2-		Brown Sandy Silt, trace gravel,		iser ntonit		-	10	,						
3-	.	trace brick fragments, damp, loose			SS	4	79	10			16.5			
	- -	Brown Sandy Clayey Silt, some	90.89		SS	5	92	16			17.3			
4-		gravel, APL, firm to very stiff Becoming grey	3.81		SS	6	70	12	Т / Ф		13.5			
5					SS	7	75	12	Т ф		17.5			
						•	50	7			10.0			
6-						0	50	1	-		19.9			
-					SS	9	54	8	- /		15.7			
7-			87.08											
8-		Sandy Silt Till	7.62		SS	10	87	>95			5.3			
-		damp, very dense		Scre										
9-		Sandy Clavey Silt Till	85.56 9.14	Silca			400	15			C 0			
10		Grey Sandy Clayey Silt, some			SS	11	100	45			0.8			
		gravel, naru		Be With										
11-					SS	12	100	>50			9.5			
-	7	End of Borebole	83.09 11.61	6868	SS	13	100	>50						
12-		End of Borehole		Water level										
- 13-		Borahole terminated at 11.61 mbgs		= 6.98 mbgs, as										
		on split spoon refusal. At drilling		on Feb 27,										
14-		measured at 9.45 mbgs.		2020.										
	С	ontractor: Geo-Environmental	Drilling l	Inc.	<u> </u>		I	<u> </u>	Grade	Elevation	n: 94.7	70 masl		
	D	rilling Method: Hollow Stem Au	uger/ Sp	lit Spoon					Top of	Casing E	levat	<i>ion:</i> 94	.53 mas	sl
	Well Casing Size: 51 mmSheet: 1 of 1													

Project #: 268429.002

Logged By: MG

Project: Preliminary Geotechnical Investigation

Client: Hullmark Developments

Location: 450 Dufferin Street, Toronto, Ontario

Drill Date: February 24, 2020

		SUBSURFACE PROFILE							s	AMPLE				
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis
0-		Ground Surface	94.25											
		∖ Asphalt ∼50 mm	0.00 93 49	18	SS	1	87	4	φ		30.9			
1-		Fill	0.76		SS	2	70	5			20.8			
		silt, trace asphalt fragments, trace	<u>92.73</u> 1.52		SS	3	62	18			14.9			
2-	# 나니	Brown Silty Sand, moist, loose	91.96 2.29	Riser	22	4	87	30			15.4			
3-	#-	Brown Silt, some clay, very moist, compact				4	07	30			10.4			
	41-	Clayey Silt Till	90.44		SS	5	25	13			14.8			
4-		trace gravel, APL, stiff to very stiff	89.83		SS	6	0	17						
5-	11-	No Recovery Clavev Silt Till	7.72		SS	7	75	14	_		10.9			
	11-	Clayey Silt, trace to some sand,												
6-	22	trace gravel, APL, stiπ Siltv Clav Till	88.15 6.10			9	83	25			14 9			
7-		Becoming Silty Clay				0	00	23			14.0			
		Brown Sandy Silt, trace clay, trace	86.63											
8-		Gravel, moist, compact	7.62	d •	SS	9	91	42			7.9			
0			85 11	Sc a Sar										
	•	Sandy Clayey Silt Till	9.14		SS	10	66	62			10.6			
10-		Grey Sandy Clayey Silt, trace gravel, hard												
					SS	11	88	>90			9.0			
12-	2		82.01		SS	12	100	>50			10.6			
=		End of Borehole	12.24											
13 		Borehole terminated at 12.24 mbgson split spoon refusal. At drillingcompletion, a dry cave was measured at 10.82 mbgs.		Water level = 5.71 mbgs, as measured on Feb 27, 2020.										
	С	ontractor: Geo-Environmental	Drillina I	Inc.	1	1	1	1	Grade	Elevation	: 94.2	5 mas		
	ך ע	rilling Method: Hollow Stem A	ider/ Sp	lit Spoon		Top of Casing Elevation: 04 17 mas								el
	14	All Casing Size: 51 mm			Shoot: 1 of 1									

Project #: 268429.002

Logged By: MG

Project: Preliminary Geotechnical Investigation

Client: Hullmark Developments

Location: 450 Dufferin Street, Toronto, Ontario

Drill Date: February 24, 2020

		SUBSURFACE PROFILE							S	AMPLE					
Depth (m)	Symbol	Description	Elevation (m)	Monitoring Well Details	Sample Type	Sampler #	Recovery (%)	SPT N-Value	Standard Penetration N-Value	Shear Strength △ kPa △ 100 200	Water Content (%)	Sample ID	Soil Vapour Concentration (ppm)	Laboratory Analysis	
0-	-	Ground Surface	94.58	मित्र											
1-		Aspnalt ~25 mm Fill	93.82 0.76		SS SS	1	87 70	4			39.2 15.6				
-		Srown Sand and Gravel, trace	93.06 1.52			2	62	•			17.6				
2-	11	Brown Sand, trace silt, moist,		iser		3	02	0							
3-	41	Clayey Silt Till		Berlin	SS	4	87	18			15.8				
=	H	Brown Clayey Silt, trace to some sand, trace gravel, APL, firm to	90.77		SS	5	25	14	ф -		13.5				
4-	Ħ	Silty Clay Till	3.81		SS	6	0	11			15.3				
5	Ħ	Becoming Silty Clay			SS	7	75	6	Т/ ф		15.4				
	#1 11														
6	ميلية مرجز	Becoming grou	<u>88.48</u> 6.10												
	112 717	Decoming grey			SS	8	83	4			16.3				
	Ħ		86.96												
8-		Silty Sand Till Grev Silty Sand, trace clay, some	7.62	d d den	SS	9	89	62			5.9				
		gravel, very dense		Scr a San											
9_					SS	10	71	>88			6.0				
10															
-		Sandy Silt Till	83.91 10.67		22	11	60	>50			8.1				
11-		Becoming Sandy Silt		tonite	00		00	- 50			0.1				
12			82.39	B RM											
-		No Recovery	12.19		SS	12	0	>50	þ -						
13-		End of Borehole Borehole terminated at 12.22 mbgs		Water level = 6.62 mbgs, as measured											
14-		completion, a dry cave was measured at 9.75 mbgs.	on Feb 27, 2020.												
	C	ontractor: Geo-Environmental	Drilling I	Inc	1	I	I	<u> </u>	Grade Elevation: 94.58 masl						
Drilling Method: Hollow Stem Auger/ Split Spoon							Top of Casing Elevation: 94.48 mas								
Well Casing Size: 51 mm Sheet: 1 of 1															

APPENDIX IV HYDRAULIC CONDUCTIVITY

APPENDIX V FOUNDATION DRAINAGE FORM

FOUNDATION DRAINAGE SUMMARY FORM

M Teronte

General Information
Applicant Name:
Development Address:
Development Application #:
Available Sewer Servicing: Storm Sewers Combined Sewers Sanitary Sewers
Groundwater Level Assessment
GW Monitoring Approach: 1. Flexible Year-Round 2. Peak Season 3. Alternate (Attach Justification)
Monitoring Length [weeks]:
Monitoring Months: □ Jan □ Feb □ Mar □ Apr □ May □ Jun □ Jul □ Aug □ Sept □ Oct □ Nov □ Dec
of Measurements:
Peak Observed GWL [masl]:
Estimated Maximum Anticipated GWL [masl]:
Lowest Elevation of Proposed Structure [masl]:
Proposed Condition and Measures (Complete all)
On-site Management Provided?
Infrastructure Required for Future Emergency Repair? □ Yes □ No
Foundation Drainage Expected to Contain Only Infiltrated Stormwater? Ves No
Site Condition: Output Non-Brownfield with no RSC Brownfield with RSC + Risk Management Other (Describe)
Proposed Foundation Drainage Management (Select one)
On-site Management (no long-term discharge to sewers)
□ On-site Management with Infrastructure for Future Emergency Repair (in accordance with Policy 4.4)
□ Long-term Discharge to Storm or Combined Sewers (in accordance with Policy Statement 4.3)
□ Request for Exemption of Policy to apply for Long-Term Discharge Agreement (in accordance with Policy Sec 5.0)
Description/Attachments in Foundation Drainage Technical Brief (Select all that apply)
On-site Management Description/Rationale for Technological Infeasibility
□ GWL Monitoring Well Plan, including Monitoring Methodology and Justification (where alternate is proposed)
GWL Monitoring and Peak Flow Estimation Results, Analysis & Interpretation
□ Building Elevation Plan
□ Site Condition Supporting Documentation (e.g., Brownfield/RSC Status, Soil Quality)
Exemption Rationale and Documentation for Technical Infeasibility and/or Extenuating Circumstances.
Describe physical and design constraints to substantiate that a technical solution was not feasible; include documentation to substantiate that there are extenuating circumstances (e.g., application submission timeline and milestones) that may warrant an exemption, where applicable.
□ Other Documentation; Specify -
Qualified Professional Sign-Off
Name: Designation:
Signature: Date:

Form to accompany Foundation Drainage Technical Brief document prepared in accordance with the Foundation Drainage Policy and Guidelines.

APPENDIX VI LABORATORY RECORD OF GROUNDWATER QUALITY

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	· WT2215311	Page	÷ 1 of 6
Client	: Terrapex Environmental Ltd.	Laboratory	: Waterloo - Environmental
Contact	: Brian Theimer	Account Manager	🗄 Gayle Braun
Address	: 90 Scarsdale Rd. Toronto ON Canada M3B2R7	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	: 416 245 0011	Telephone	: +1 519 886 6910
Project	: CT3580.00	Date Samples Received	: 21-Sep-2022 15:00
PO	:	Date Analysis Commenced	: 23-Sep-2022
C-O-C number	: 20-999848	Issue Date	: 04-Oct-2022 14:51
Sampler	: VS/BS		
Site	:		
Quote number	: SOA		
No. of samples received	: 1		
No. of samples analysed	:1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Adam Boettger	Team Leader - LCMS	LCMS, Waterloo, Ontario
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Metals, Waterloo, Ontario
Joseph Scharbach		Organics, Waterloo, Ontario
Rachel Cameron	Team Leader - Semi-Volatile Organics	Organics, Waterloo, Ontario
Sarah Birch	Team Leader - Volatiles	Organics, Waterloo, Ontario
Stephanie Pinheiro	Analyst	LCMS, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non -infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key: LOR: Limit of Reporting (detection limit).

Unit	Description
µg/L	micrograms per litre
CFU/100mL	colony forming units per 100 mL
mg/L	milligrams per litre
pH units	pH units
>: greater than.	

<: less than.

Red shading is applied where the result is greater than the Guideline Upper Limit or the result is lower than the Guideline Lower Limit. For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Qualifiers

Qualifier	Description
DLDS	Detection Limit Raised: Dilution required due to high Dissolved Solids / Electrical
	Conductivity.
DLHC	Detection Limit Raised: Dilution required due to high concentration of test analyte(s).
NDOGN	No Data-Total Coliform and/or E.Coli plate overgrown with non-target.

Analytical Results

			Client sample ID	MW104A							
Sub-Matrix: Water		Sa	ampling date/time	21-Sep-2022							
(Matrix: Water)				15:00							
Analyte	Method	LOR	Unit	WT2215311-001		TORSUB	TORSUB	TORSUB			
						Guideline	SAN	STM			
						Limit					
Physical Tests											
pН	E108	0.10	pH units	8.00		6 - 9.5 pH	6 - 11.5 pH	6 - 9.5 pH			
						units	units	units			
solids, total suspended [TSS]	E160	3.0	mg/L	11.4		15 mg/L	350 mg/L	15 mg/L			
Anions and Nutrients		1									
chloride	E235.Cl	0.50	mg/L	411	DLDS						
fluoride	E235.F	0.020	mg/L	0.720	DLDS		10 mg/L				
Kjeldahl nitrogen, total [TKN]	E318	0.050	mg/L	3.41			100 mg/L				
phosphorus, total	E372-U	0.0020	mg/L	0.0773		0.4 mg/L	10 mg/L	0.4 mg/L			
sulfate (as SO4)	E235.SO4	0.30	mg/L	50.6	DLDS						
Cyanides											
cyanide, strong acid	E333	0.0020	mg/L	<0.0020		0.02 mg/L	2 mg/L	0.02 mg/L			
dissociable (total)											
Microbiological Tests											
coliforms, Escherichia coli [E.	E012A.EC	1	CFU/100mL	NR	NDOGN	200		200			
coli]						CFU/100mL		CFU/100mL			
Total Metals	1	1	1				1	1	1	1	
aluminum, total	E420	0.0030	mg/L	0.279	DLHC		50 mg/L				
antimony, total	E420	0.00010	mg/L	0.00196	DLHC		5 mg/L				
arsenic, total	E420	0.00010	mg/L	0.00690	DLHC	0.02 mg/L	1 mg/L	0.02 mg/L			
cadmium, total	E420	0.0000050	mg/L	<0.0000500	DLHC	0.008 mg/L	0.7 mg/L	0.008 mg/L			
chromium, total	E420	0.00050	mg/L	<0.00500	DLHC	0.08 mg/L	4 mg/L	0.08 mg/L			
cobalt, total	E420	0.00010	mg/L	<0.00100	DLHC		5 mg/L				
copper, total	E420	0.00050	mg/L	<0.00500	DLHC	0.04 mg/L	2 mg/L	0.04 mg/L			
lead, total	E420	0.000050	mg/L	0.000733	DLHC	0.12 mg/L	1 mg/L	0.12 mg/L			
manganese, total	E420	0.00010	mg/L	0.120	DLHC	0.05 mg/L	5 mg/L	0.05 mg/L			
mercury, total	E508	0.0000050	mg/L	<0.000050		0.0004 mg/L	0.01 mg/L	0.0004 mg/L			
molybdenum, total	E420	0.000050	mg/L	0.0337	DLHC		5 mg/L				
nickel, total	E420	0.00050	mg/L	<0.00500	DLHC	0.08 mg/L	2 mg/L	0.08 mg/L			
selenium, total	E420	0.000050	mg/L	<0.000500	DLHC	0.02 mg/L	1 mg/L	0.02 mg/L			
silver, total	E420	0.000010	mg/L	<0.000100	DLHC	0.12 mg/L	5 mg/L	0.12 mg/L			
tin, total	E420	0.00010	mg/L	0.00170	DLHC		5 mg/L				
titanium, total	E420	0.00030	mg/L	0.00332	DLHC		5 mg/L				
zinc. total	E420	0.0030	mg/l	<0.0300	DLHC	0.04 ma/L	2 mg/L	0.04 ma/L			
		0.0000	mg/ -	-0.0000	22.10	3.0-1 mg/E		0.04 mg/L			

Page	: 4 of 6
Work Order	: WT2215311
Client	: Terrapex Environmental Ltd.
Project	CT3580.00

Analyte	Method	LOR	Unit	WT2215311-001 (Continued)	TORSUB Guideline	TORSUB SAN	TORSUB STM		
Speciated Metals					Linit		1	I	
chromium, hexavalent [Cr VI], total	E532	0.00050	mg/L	<0.00050				 	
Aggregate Organics	1	· · · · · ·							
biochemical oxygen demand	E550	2.0	mg/L	4.3	15 mg/L	300 mg/L	15 mg/L	 	
oil & grease (gravimetric)	E567	5.0	mg/L	<5.0				 	
oil & grease, animal/vegetable (gravimetric)	EC567A.SG	5.0	mg/L	<5.0		150 mg/L		 	-
oil & grease, mineral (gravimetric)	E567SG	5.0	mg/L	<5.0		15 mg/L		 	
phenols, total (4AAP)	E562	0.0010	mg/L	<0.0010	0.008 mg/L	1 mg/L	0.008 mg/L	 	
Volatile Organic Compounds									
benzene	E611D	0.00050	mg/L	<0.00050	0.002 mg/L	0.01 mg/L	0.002 mg/L	 	
chloroform	E611D	0.00050	mg/L	<0.00050	0.002 mg/L	0.04 mg/L	0.002 mg/L	 	
dichlorobenzene, 1,2-	E611D	0.00050	mg/L	<0.00050	0.0056 mg/L	0.05 mg/L	0.0056 mg/L	 	
dichlorobenzene, 1,4-	E611D	0.00050	mg/L	<0.00050	0.0068 mg/L	0.08 mg/L	0.0068 mg/L	 	
dichloroethylene, cis-1,2-	E611D	0.00050	mg/L	<0.00050	0.0056 mg/L	4 mg/L	0.0056 mg/L	 	
dichloromethane	E611D	0.0010	mg/L	<0.0010	0.0052 mg/L	2 mg/L	0.0052 mg/L	 	
dichloropropylene, trans-1,3-	E611D	0.00030	mg/L	<0.00030	0.0056 mg/L	0.14 mg/L	0.0056 mg/L	 	
ethylbenzene	E611D	0.00050	mg/L	<0.00050	0.002 mg/L	0.16 mg/L	0.002 mg/L	 	
tetrachloroethane, 1,1,2,2-	E611D	0.00050	mg/L	<0.00050	0.017 mg/L	1.4 mg/L	0.017 mg/L	 	
tetrachloroethylene	E611D	0.00050	mg/L	<0.00050	0.0044 mg/L	1 mg/L	0.0044 mg/L	 	
toluene	E611D	0.00050	mg/L	<0.00050	0.002 mg/L	0.016 mg/L	0.002 mg/L	 	
trichloroethylene	E611D	0.00050	mg/L	<0.00050	0.0076 mg/L	0.4 mg/L	0.0076 mg/L	 	
xylene, m+p-	E611D	0.00040	mg/L	<0.00040				 	
xylene, o-	E611D	0.00030	mg/L	<0.00030				 	
xylenes, total	E611D	0.00050	mg/L	<0.00050	0.0044 mg/L	1.4 mg/L	0.0044 mg/L	 	
Volatile Organic Compounds	Surrogates	1 1			<u> </u>	<u> </u>		1	
bromofluorobenzene, 4-	E611D	1.0	%	87.3				 	
difluorobenzene, 1,4-	E611D	1.0	%	97.9				 	
Polycyclic Aromatic Hydroca	arbons	· · · · · · · · · · · · · · · · · · ·					'	'	
anthracene	E641A-L	0.000010	mg/L	<0.000010				 	
benz(a)anthracene	E641A-L	0.000010	mg/L	<0.000010				 	
benzo(a)pyrene	E641A-L	0.0000050	mg/L	<0.000050				 	
benzo(b+j)fluoranthene	E641A-L	0.000010	mg/L	<0.000010				 	
benzo(e)pyrene	E641A-L	0.000010	mg/L	<0.000010				 	
benzo(g,h,i)perylene	E641A-L	0.000010	mg/L	<0.000010				 	

Page	5 of 6
Work Order	: WT2215311
Client	: Terrapex Environmental Ltd.
Project	CT3580.00

Analyte	Method	LOR	Unit	WT2215311-001	TORSUB	TORSUB	TORSUB			
				(Continued)	Guideline	SAN	STM			
					Limit					
Polycyclic Aromatic Hydroca	arbons - Continue	d					1	1		
benzo(k)fluoranthene	E641A-L	0.000010	mg/L	<0.000010						
chrysene	E641A-L	0.000010	mg/L	<0.00010						
dibenz(a,h)acridine	E642D	0.000050	mg/L	<0.000056						
dibenz(a,h)anthracene	E641A-L	0.0000050	mg/L	<0.000050						
dibenz(a,j)acridine	E642D	0.000050	mg/L	<0.000056						
dibenzo(a,i)pyrene	E642D	0.000050	mg/L	<0.000056						
dibenzo(c,g)carbazole, 7H-	E642D	0.000050	mg/L	<0.000056						
dinitropyrene, 1,3-	E642D	0.0010	mg/L	<0.0010						
dinitropyrene, 1,6-	E642D	0.0010	mg/L	<0.0010						
dinitropyrene, 1,8-	E642D	0.0010	mg/L	<0.0010						
fluoranthene	E641A-L	0.000010	mg/L	0.000012						
indeno(1,2,3-c,d)pyrene	E641A-L	0.000010	mg/L	<0.000010						
methylcholanthrene, 3-	E642D	0.000050	mg/L	<0.000056						
perylene	E641A-L	0.000010	mg/L	<0.000010						
phenanthrene	E641A-L	0.000010	mg/L	0.000021						
pyrene	E641A-L	0.000010	mg/L	<0.000010						
PAHs, total (ON Sewer Use)	EC640A	0.00175	mg/L	<0.00175	0.002 mg/L	0.005 mg/L	0.002 mg/L			
Phthalate Esters										
bis(2-ethylhexyl) phthalate [DEHP]	E655F	0.0020	mg/L	<0.0020	0.0088 mg/L	0.012 mg/L	0.0088 mg/L			
di-n-butyl phthalate	E655F	0.0010	mg/L	<0.0010	0.015 mg/L	0.08 mg/L	0.015 mg/L			
Semi-Volatile Organics	1						1			
dichlorobenzidine, 3,3'-	E655F	0.00040	mg/L	<0.00040	0.0008 mg/L	0.002 mg/L	0.0008 mg/L			
Chlorinated Phenolics										
pentachlorophenol [PCP]	E655F	0.00050	mg/L	<0.00050	0.002 mg/L	0.005 mg/L	0.002 mg/L			
Nonylphenols										
nonylphenol diethoxylates [NP2EO]	E749B	0.00010	mg/L	<0.00010						
nonylphenol ethoxylates, total	E749B	0.0020	mg/L	<0.0020	0.01 mg/L	0.2 mg/L	0.01 mg/L			
nonylphenol monoethoxylates [NP1EO]	E749B	0.0020	mg/L	<0.0020						
nonylphenols [NP]	E749A	0.0010	mg/L	<0.0010	0.001 mg/L	0.02 mg/L	0.001 mg/L			
Polychlorinated Biphenyls					·	·	·	·	·	·
Aroclor 1016	E687	0.000020	mg/L	<0.000020						
Aroclor 1221	E687	0.000020	mg/L	<0.000020						
Aroclor 1232	E687	0.000020	mg/L	<0.000020						
Aroclor 1242	E687	0.000020	mg/L	<0.000020						

Page	: 6 of 6
Work Order	: WT2215311
Client	: Terrapex Environmental Ltd.
Project	CT3580.00

Analyte	Method	LOR	Unit	WT2215311-001	TORSUB	TORSUB	TORSUB		
				(Continued)	Guideline	SAN	STM		
					Limit				
Polychlorinated Biphenyls - C	Continued								
Aroclor 1248	E687	0.000020	mg/L	<0.000020				 	
Aroclor 1254	E687	0.000020	mg/L	<0.000020				 	
Aroclor 1260	E687	0.000020	mg/L	<0.000020				 	
Aroclor 1262	E687	0.000020	mg/L	<0.000020				 	
Aroclor 1268	E687	0.000020	mg/L	<0.000020				 	
polychlorinated biphenyls	E687	0.000060	mg/L	<0.000060	0.0004 mg/L	0.001 mg/L	0.0004 mg/L	 	
[PCBs], total									
decachlorobiphenyl	E687	0.1	%	92.8				 	
tetrachloro-m-xylene	E687	0.1	%	92.7				 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Summary of Guideline Breaches by Sample

SampleID/Client ID	Matrix	Analyte	Analyte Summary	Guideline	Category	Result	Limit
MW104A	Water	manganese, total		TORSUB	Guideline Limit	0.120 mg/L	0.05 mg/L
	Water	manganese, total		TORSUB	STM	0.120 mg/L	0.05 mg/L

Key:

TORSUB

Ontario Toronto Sanitary Discharge Sewer By-Law 100-2016 (FEB 4,2016)

Guideline LimitOntario Toronto Storm Sewer By-LawSANToronto Sanitary Discharge Sewer By-LawSTMToronto Storm Discharge Sewer By-Law

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: WT2215311	Page	: 1 of 12	
Client	: Terrapex Environmental Ltd.	Laboratory	: Waterloo - Environmental	
Contact	: Brian Theimer	Account Manager	: Gayle Braun	
Address	: 90 Scarsdale Rd.	Address	: 60 Northland Road, Unit 1	
	Toronto ON Canada M3B2R7		Waterloo, Ontario Canada N2V 2B8	
Telephone	416 245 0011	Telephone	: +1 519 886 6910	
Project	: CT3580.00	Date Samples Received	: 21-Sep-2022 15:00	
PO	:	Issue Date	: 04-Oct-2022 14:51	
C-O-C number	: 20-999848			
Sampler	: VS/BS			
Site	:			
Quote number	: SOA			
No. of samples received	:1			
No. of samples analysed	:1			

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summarizes.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- No Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Matrix Spike outliers occur.
- Laboratory Control Sample (LCS) outliers occur please see following pages for full details.
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• No Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>No</u> Quality Control Sample Frequency Outliers occur.

Outliers : Quality Control Samples Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: Water

Analyte Group	Laboratory sample ID	Client/Ref Sample ID	Analyte	CAS Number	Method	Result	Limits	Comment
Laboratory Control Sample (LCS) Recover	ies							
Polycyclic Aromatic Hydrocarbons	QC-662255-002		methylcholanthrene, 3-	56-49-5	E642D	164 % ^{LCS-H}	60.0-130%	Recovery greater than upper control limit
Semi-Volatile Organics	QC-MRG4-6622560 02		dichlorobenzidine, 3,3'-	91-94-1	E655F	39.9 % RRQC	50.0-140%	Recovery less than lower control limit
Chlorinated Phenolics	QC-MRG4-6622560 02		pentachlorophenol [PCP]	87-86-5	E655F	148 % ^{LCS-H}	50.0-140%	Recovery greater than upper control limit

Result Qualifiers							
Qualifier	Description						
LCS-H	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.						
RRQC	Refer to report comments for information regarding this QC result.						

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Ev	aluation: 🗴 =	Holding time exce	edance ; 🔹	= Within	Holding Tim
Analyte Group	Method	Sampling Date	Ext	traction / Pi	reparation		Analysis			
Container / Client Sample ID(s)			Preparation Date	Holdin Rec	g Times Actual	Eval	Analysis Date	Holding Rec	g Times Actual	Eval
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT-4d] MW104A	E550	21-Sep-2022					23-Sep-2022	4 days	1 days	A
Aggregate Organics : Mineral Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid) MW104A	E567SG	21-Sep-2022	25-Sep-2022	28 days	4 days	1	28-Sep-2022	40 days	3 days	4
Aggregate Organics : Oil & Grease by Gravimetry										
Amber glass (hydrochloric acid) MW104A	E567	21-Sep-2022	25-Sep-2022	28 days	4 days	4	28-Sep-2022	40 days	3 days	4
Aggregate Organics : Phenols (4AAP) in Water by Colorimetry										
Amber glass total (sulfuric acid) [ON MECP] MW104A	E562	21-Sep-2022	27-Sep-2022	28 days	6 days	A	28-Sep-2022	22 days	1 days	1
Anions and Nutrients : Chloride in Water by IC										
HDPE [ON MECP] MW104A	E235.CI	21-Sep-2022	28-Sep-2022				28-Sep-2022	28 days	7 days	4
Anions and Nutrients : Fluoride in Water by IC			1							
HDPE [ON MECP] MW104A	E235.F	21-Sep-2022	28-Sep-2022				28-Sep-2022	28 days	7 days	4
Anions and Nutrients : Sulfate in Water by IC										
HDPE [ON MECP] MW104A	E235.SO4	21-Sep-2022	28-Sep-2022				28-Sep-2022	28 days	7 days	A

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation					Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	Times	Eval
			Date	Rec	Actual			Rec	Actual	
Anions and Nutrients : Total Kjeldahl Nitrogen by Fluorescence (Low Level)										
Amber glass total (sulfuric acid) [ON MECP] MW104A	E318	21-Sep-2022	28-Sep-2022				28-Sep-2022	28 days	7 days	4
Anions and Nutrients : Total Phosphorus by Colourimetry (0.002 mg/L)				1				II		
Amber glass total (sulfuric acid) [ON MECP]										
MW104A	E372-U	21-Sep-2022	28-Sep-2022				29-Sep-2022	28 days	8 days	4
Chlorinated Phenolics : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS				1						
Amber glass/Teflon lined cap [ON MECP] MW104A	E655F	21-Sep-2022	23-Sep-2022				26-Sep-2022			
Cyanides : Total Cyanide										
HDPE - total (sodium hydroxide) MW104A	E333	21-Sep-2022	26-Sep-2022				26-Sep-2022	14 days	5 days	4
Microbiological Tests : E. coli (MF-mFC-BCIG)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] MW104A	E012A.EC	21-Sep-2022					23-Sep-2022	48 hrs	47 hrs	A
Nonylphenols : Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode										
Amber glass/Teflon lined cap - LCMS MW104A	E749B	21-Sep-2022	27-Sep-2022	7 days	6 days	√	28-Sep-2022	7 days	1 days	*
Nonylphenols : Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negativ	ve Mode			1						
Amber glass/Teflon lined cap - LCMS MW104A	E749A	21-Sep-2022	27-Sep-2022	7 days	6 days	1	28-Sep-2022	7 days	1 days	4
Phthalate Esters : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS										
Amber glass/Teflon lined cap [ON MECP] MW104A	E655F	21-Sep-2022	23-Sep-2022				26-Sep-2022			
Physical Tests : pH by Meter										
HDPE [ON MECP] MW104A	E108	21-Sep-2022	28-Sep-2022				28-Sep-2022	14 days	7 days	4

Matrix: Water					Ev	aluation: × =	Holding time exce	edance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Ex	traction / P	reparation			Analys	is	
Container / Client Sample ID(s)			Preparation	Holdin	g Times	Eval	Analysis Date	Holding	g Times	Eval
			Date	Rec	Actual			Rec	Actual	
Physical Tests : TSS by Gravimetry										
HDPE [ON MECP] MW104A	E160	21-Sep-2022					25-Sep-2022	7 days	4 days	A
Polychlorinated Biphenyls : PCB Aroclors by GC-MS	-									
Amber glass/Teflon lined cap (sodium bisulfate) MW104A	E687	21-Sep-2022	26-Sep-2022	14 days	5 days	ð	27-Sep-2022	40 days	1 days	4
Polycyclic Aromatic Hydrocarbons : PAHs (ON Special List) by GC-MS										
Amber glass/Teflon lined septa cap [ON MECP] MW104A	E642D	21-Sep-2022	23-Sep-2022	14 days	2 days	1	26-Sep-2022	40 days	3 days	✓
Polycyclic Aromatic Hydrocarbons : PAHs by Hexane LVI GC-MS (Low Level)										
Amber glass/Teflon lined cap (sodium bisulfate) MW104A	E641A-L	21-Sep-2022	23-Sep-2022	14 days	2 days	A	28-Sep-2022	40 days	5 days	~
Semi-Volatile Organics : BNA (Ontario Sanitary Sewer SVOC Target List) by GC-M	3									
Amber glass/Teflon lined cap [ON MECP] MW104A	E655F	21-Sep-2022	23-Sep-2022	14 days	2 days	1	26-Sep-2022	40 days	3 days	√
Speciated Metals : Total Hexavalent Chromium (Cr VI) by IC										
HDPE - total (sodium hydroxide) MW104A	E532	21-Sep-2022					26-Sep-2022	28 days	5 days	ð
Total Metals : Total Mercury in Water by CVAAS										
Glass vial total (hydrochloric acid) [ON MECP] MW104A	E508	21-Sep-2022	26-Sep-2022				26-Sep-2022	28 days	5 days	A
Total Metals : Total metals in Water by CRC ICPMS			· · · · ·							
HDPE total (nitric acid) MW104A	E420	21-Sep-2022	25-Sep-2022				25-Sep-2022	180 days	4 days	s.
Volatile Organic Compounds : VOCs (Eastern Canada List) by Headspace GC-MS			·							
Glass vial (sodium bisulfate) MW104A	E611D	21-Sep-2022	26-Sep-2022				26-Sep-2022	14 days	5 days	A

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: ★ = QC frequency outside specification; ✓ = QC frequ						hin specification.
Quality Control Sample Type			Со	unt		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Duplicates (DUP)							
Biochemical Oxygen Demand - 5 day	E550	662436	1	13	7.6	5.0	✓
Chloride in Water by IC	E235.Cl	669272	1	5	20.0	5.0	✓
E. coli (MF-mFC-BCIG)	E012A.EC	662803	1	9	11.1	5.0	✓
Fluoride in Water by IC	E235.F	669271	1	3	33.3	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	665347	1	20	5.0	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	665346	1	20	5.0	5.0	✓
pH by Meter	E108	669275	1	15	6.6	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	666017	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	669273	1	5	20.0	5.0	✓
Total Cyanide	E333	666273	1	10	10.0	5.0	✓
Total Hexavalent Chromium (Cr VI) by IC	E532	665904	1	14	7.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	666023	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	665474	1	14	7.1	5.0	✓
Total metals in Water by CRC ICPMS	E420	664619	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	666038	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	664754	1	20	5.0	4.7	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	665343	1	20	5.0	5.0	✓
Laboratory Control Samples (LCS)							
Biochemical Oxygen Demand - 5 day	E550	662436	1	13	7.6	5.0	✓
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	662259	1	1	100.0	5.0	✓
Chloride in Water by IC	E235.Cl	669272	1	5	20.0	5.0	1
Fluoride in Water by IC	E235.F	669271	1	3	33.3	5.0	✓
Mineral Oil & Grease by Gravimetry	E567SG	665272	1	19	5.2	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	665347	1	20	5.0	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	665346	1	20	5.0	5.0	✓
Oil & Grease by Gravimetry	E567	665271	1	19	5.2	5.0	✓
PAHs (ON Special List) by GC-MS	E642D	662255	1	1	100.0	5.0	✓
PAHs by Hexane LVI GC-MS (Low Level)	E641A-L	662341	1	1	100.0	5.0	✓
PCB Aroclors by GC-MS	E687	666138	1	16	6.2	4.7	✓
pH by Meter	E108	669275	1	15	6.6	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	666017	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	669273	1	5	20.0	5.0	✓
Total Cyanide	E333	666273	1	10	10.0	5.0	✓
Total Hexavalent Chromium (Cr VI) by IC	E532	665904	1	14	7.1	5.0	~
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	666023	1	20	5.0	5.0	~
Total Mercury in Water by CVAAS	E508	665474	1	14	7.1	5.0	✓
Total metals in Water by CRC ICPMS	E420	664619	1	18	5.5	5.0	✓

Page	8 of 12
Work Order	WT2215311
Client	Terrapex Environmental Ltd.
Project	CT3580.00

Matrix: Water		Evaluati	on: × = QC freque	ency outside spe	ecification; ✓ = 0	QC frequency wit	hin specification.
Quality Control Sample Type			Co	ount		Frequency (%))
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation
Laboratory Control Samples (LCS) - Continued							
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	666038	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	664754	1	20	5.0	4.7	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	665343	1	20	5.0	5.0	✓
Method Blanks (MB)							
Biochemical Oxygen Demand - 5 day	E550	662436	1	13	7.6	5.0	 Image: A set of the /li>
BNA (Ontario Sanitary Sewer SVOC Target List) by GC-MS	E655F	662259	1	1	100.0	5.0	✓
Chloride in Water by IC	E235.CI	669272	1	5	20.0	5.0	✓
E. coli (MF-mFC-BCIG)	E012A.EC	662803	1	9	11.1	5.0	✓
Fluoride in Water by IC	E235.F	669271	1	3	33.3	5.0	✓
Mineral Oil & Grease by Gravimetry	E567SG	665272	1	19	5.2	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	665347	1	20	5.0	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	665346	1	20	5.0	5.0	✓
Oil & Grease by Gravimetry	E567	665271	1	19	5.2	5.0	✓
PAHs (ON Special List) by GC-MS	E642D	662255	1	1	100.0	5.0	✓
PAHs by Hexane LVI GC-MS (Low Level)	E641A-L	662341	1	1	100.0	5.0	✓
PCB Aroclors by GC-MS	E687	666138	1	16	6.2	4.7	✓
Phenols (4AAP) in Water by Colorimetry	E562	666017	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	669273	1	5	20.0	5.0	✓
Total Cyanide	E333	666273	1	10	10.0	5.0	✓
Total Hexavalent Chromium (Cr VI) by IC	E532	665904	1	14	7.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	666023	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	665474	1	14	7.1	5.0	✓
Total metals in Water by CRC ICPMS	E420	664619	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	666038	1	20	5.0	5.0	✓
TSS by Gravimetry	E160	664754	1	20	5.0	4.7	✓
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	665343	1	20	5.0	5.0	✓
Matrix Spikes (MS)							
Chloride in Water by IC	E235.CI	669272	1	5	20.0	5.0	✓
Fluoride in Water by IC	E235.F	669271	1	3	33.3	5.0	✓
Nonylphenol Ethoxylates in Water by LC-MS-MS Positive Mode	E749B	665347	1	20	5.0	5.0	✓
Nonylphenol, Octylphenol and BPA in Water by LC-MS-MS Negative Mode	E749A	665346	1	20	5.0	5.0	✓
Phenols (4AAP) in Water by Colorimetry	E562	666017	1	20	5.0	5.0	✓
Sulfate in Water by IC	E235.SO4	669273	1	5	20.0	5.0	✓
Total Cyanide	E333	666273	1	10	10.0	5.0	✓
Total Hexavalent Chromium (Cr VI) by IC	E532	665904	1	14	7.1	5.0	✓
Total Kjeldahl Nitrogen by Fluorescence (Low Level)	E318	666023	1	20	5.0	5.0	✓
Total Mercury in Water by CVAAS	E508	665474	1	14	7.1	5.0	✓
Total metals in Water by CRC ICPMS	E420	664619	1	18	5.5	5.0	✓
Total Phosphorus by Colourimetry (0.002 mg/L)	E372-U	666038	1	20	5.0	5.0	~
VOCs (Eastern Canada List) by Headspace GC-MS	E611D	665343	1	20	5.0	5.0	✓

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
E. coli (MF-mFC-BCIG)	E012A.EC Waterloo -	Water	ON E3433 (mod)	Following filtration (0.45 μ m), and incubation at 44.5±0.2°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
nH hy Motor	Environmental	Motor		
ph by Meter	E108	vvater	APHA 4500-H (Mod)	pH is determined by potentiometric measurement with a pH electrode, and is conducted at ambient laboratory temperature (normally $20 \pm 5^{\circ}$ C). For bigh accuracy test results
	Waterloo -			nH should be measured in the field within the recommended 15 minute hold time
	Environmental			
TSS by Gravimetry	Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a class fibre
	2100			filter following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the
	Waterloo -			filtered solids Samples containing very high dissolved solid content (i.e. seawaters
	Environmental			hrackish waters) may produce a positive bias by this method. Alternate analysis
	Environmental			methods are available for these types of samples.
Chloride in Water by IC	E235.CI	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Fluoride in Water by IC	E235.F	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Sulfate in Water by IC	E235.SO4	Water	EPA 300.1 (mod)	Inorganic anions are analyzed by Ion Chromatography with conductivity and /or UV detection.
	Waterloo -			
	Environmental			
Total Kjeldahl Nitrogen by Fluorescence (Low	E318	Water	Method Fialab 100,	TKN in water is determined by automated continuous flow analysis with membrane
Level)			2018	diffusion and fluorescence detection, after reaction with OPA (ortho-phthalaldehyde).
	Waterloo -			This method is approved under US EPA 40 CFR Part 136 (May 2021).
	Environmental			
Total Cyanide	E333	Water	ISO 14403 (mod)	Total or Strong Acid Dissociable (SAD) Cyanide is determined by Continuous Flow Analyzer (CFA) with in-line UV digestion followed by colourmetric analysis.
	Waterloo -			
	Environmental			Method Limitation: High levels of thiocyanate (SCN) may cause positive interference (up
				to 0.5% of SCN concentration).
Total Phosphorus by Colourimetry (0.002	E372-U	Water	APHA 4500-P E (mod).	Total Phosphorus is determined colourimetrically using a discrete analyzer after heated
mg/L)				persulfate digestion of the sample.
	Waterloo -			
	Environmental			

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Total metals in Water by CRC ICPMS	E420	Water	EPA 200.2/6020B	Water samples are digested with nitric and hydrochloric acids, and analyzed by
			(mod)	Collision/Reaction Cell ICPMS.
	Waterloo -			
	Environmental			Method Limitation (re: Sulfur): Sulfide and volatile sulfur species may not be recovered
				by this method.
Total Mercury in Water by CVAAS	E508	Water	EPA 1631E (mod)	Water samples undergo a cold-oxidation using bromine monochloride prior to reduction
				with stannous chloride, and analyzed by CVAAS
	Waterloo -			
Total Hexavalent Chromium (Cr.VI) by IC	Environmentai	Water		Havavalant Chromium is massured by lan abromatography Dast solumn reaction and LW
Total nexavalent onionnam (or vi) by to	E032	Water	Chromatography)	detection
	Waterloo -		Chiomatography)	
	Environmental			Results are based on an un-filtered, field-preserved sample
Biochemical Oxygen Demand - 5 day	E550	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen
				depletion is measured using a dissolved oxygen meter.
	Waterloo -			
	Environmental			Free chlorine is a negative interference in the BOD method; please advise ALS when
				free chlorine is present in samples.
Phenols (4AAP) in Water by Colorimetry	E562	Water	EPA 9066	This automated method is based on the distillation of phenol and subsequent reaction of
				the distillate with alkaline ferricyanide (K3Fe(CN)6) and 4-amino-antipyrine (4-AAP) to
	Waterloo -			form a red complex which is measured colorimetrically.
	Environmental			
Oil & Grease by Gravimetry	E567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane and the extract is evaporated to
	Waterlag		(Oil & Grease) (mod)	dryness. The residue is then weighed to determine Oil and Grease.
	Environmental			
Mineral Oil & Grease by Gravimetry	Environmental E567SG	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane, followed by silica get treatment after
	230700	Trate.	(Oil & Grease) (mod)	which the extract is evaporated to dryness. The residue is then weighed to determine
	Waterloo -			Mineral Oil and Grease.
	Environmental			
VOCs (Eastern Canada List) by Headspace	E611D	Water	EPA 8260D (mod)	Volatile Organic Compounds (VOCs) are analyzed by static headspace GC-MS.
GC-MS				Samples are prepared in headspace vials and are heated and agitated on the
	Waterloo -			headspace autosampler, causing VOCs to partition between the aqueous phase and
	Environmental			the headspace in accordance with Henry's law.
PAHs by Hexane LVI GC-MS (Low Level)	E641A-L	Water	EPA 8270E (mod)	Polycyclic Aromatic Hydrocarbons (PAHs) are analyzed by large volume injection (LVI)
				GC-MS.
	Waterloo -			
PAHe (ON Special List) by CC MS	Environmentai	Watar	EDA 9270E (mod)	Balvavalia Aramatia Hydrocarhona (BAHa) ara analyzad by CC MS
FAILS (ON SPECIALLIST) BY GC-IVIS	E042D	vvaler		r viyeyelle Aromalle myurucarbons (rAms) are analyzed by GC-MS.
	Waterloo -			
	Environmental			
BNA (Ontario Sanitary Sewer SVOC Target	E655F	Water	EPA 8270E (mod)	BNA are analyzed by GC-MS.
List) by GC-MS				
	Waterloo -			
	Environmental			

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
PCB Aroclors by GC-MS	E687	Water	EPA 8270E (mod)	PCB Aroclors are analyzed by GC-MS
	Waterloo -			
	Environmental			
Nonylphenol, Octylphenol and BPA in Water	E749A	Water	J. Chrom A849 (1999)	An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol-D4,
by LC-MS-MS Negative Mode			p.467-482	Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and
	Waterloo -			analyzed by LC-MS/MS.
	Environmental			
Nonylphenol Ethoxylates in Water by	E749B	Water	J. Chrom A849 (1999)	Water samples are filtered and analyzed on LCMS/MS by direct injection.
LC-MS-MS Positive Mode			p.467-482	
	Waterloo -			
	Environmental			
Animal & Vegetable Oil & Grease by	EC567A.SG	Water	APHA 5520 (mod)	Animal & vegetable oil and grease is calculated as follows: Oil & Grease (gravimetric)
Gravimetry				minus Mineral Oil & Grease (gravimetric)
	Waterloo -			
	Environmental			
Total PAH (Ontario Sewer Use Extended List)	EC640A	Water	Calculation (Sum of	Total PAH (Ontario Sewer Use) is the sum of the following PAHs: anthracene,
			the Squares)	benz(a)anthracene, benzo(a)pyrene, benzo(b+j)fluoranthene, benzo(g,h,i)perylene,
	Waterloo -			benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, fluoranthene,
	Environmental			indeno(1,2,3-c,d)pyrene, phenanthrene, pyrene, benzo(e)pyrene, perylene,
				3-methylcholanthrene, 1,3-dinitropyrene, 1,6-dinitropyrene, 1,8-dinitropyrene,
				7H-dibenzo(c,g)carbazole, dibenzo(a,i)pyrene, dibenz(a,j)acridine, and
				dibenz(a,h)acridine. When the PAH is less than LOR, zero is used for calculation.
Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
Digestion for TKN in water	EP318	Water	APHA 4500-Norg D (mod)	Samples are digested at high temperature using Sulfuric Acid with Copper catalyst, which converts organic nitrogen sources to Ammonia, which is then quantified by the
	Waterloo -		. ,	analytical method as TKN. This method is unsuitable for samples containing high levels
	Environmental			of nitrate. If nitrate exceeds TKN concentration by ten times or more, results may be
				biased low.
Digestion for Total Phosphorus in water	EP372	Water	APHA 4500-P E (mod).	Samples are heated with a persulfate digestion reagent.
	Waterloo -			
	Environmental			
Oil & Grease Extraction for Gravimetry	EP567	Water	BC MOE Lab Manual	The entire water sample is extracted with hexane by liquid-liquid extraction.
			(Oil & Grease) (mod)	
	Waterloo -			
	Environmental			
VOCs Preparation for Headspace Analysis	EP581	Water	EPA 5021A (mod)	Samples are prepared in headspace vials and are heated and agitated on the
				headspace autosampler. An aliquot of the headspace is then injected into the
	Waterloo -			GC/MS-FID system.
	Waterioo -			
	Environmental			
PHCs and PAHs Hexane Extraction	Environmental EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are
PHCs and PAHs Hexane Extraction	Environmental EP601	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.
PHCs and PAHs Hexane Extraction	Environmental EP601 Waterloo -	Water	EPA 3511 (mod)	Petroleum Hydrocarbons (PHCs) and Polycyclic Aromatic Hydrocarbons (PAHs) are extracted using a hexane liquid-liquid extraction.

Preparation Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
PAHs DCM Extraction	EP642	Water	EPA 3510C (mod)	PAH are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			
BNA Extraction	EP655	Water	EPA 3510C (mod)	SVOCs are extracted from aqueous sample using DCM liquid-liquid extraction.
	Waterloo -			
	Environmental			
Pesticides, PCB, and Neutral Extractable	EP660	Water	EPA 3511 (mod)	Samples are extracted from aqueous sample using an organic solvent liquid-liquid
Chlorinated Hydrocarbons Extraction				extraction.
	Waterloo -			
	Environmental			
Preparation of Nonylphenol and Nonylphenol	EP749	Water	J. Chrom A849 (1999)	An aliquot of 5.0 ± 0.10 mL of filtered sample is spiked with Nonylphenol-D4,
Ethoxylates			p.467-482	Nonylphenol Diethoxylate 13C6, and Bisphenol A 13C12 internal standards and
	Waterloo -			analyzed by LC-MS/MS.
	Environmental			

QUALITY CONTROL REPORT

WT2215311	Page	: 1 of 14
: Terrapex Environmental Ltd.	Laboratory	: Waterloo - Environmental
Brian Theimer	Account Manager	: Gayle Braun
∶90 Scarsdale Rd. Toronto ON Canada M3B2R7	Address	∶60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
: 416 245 0011	Telephone	:+1 519 886 6910
: CT3580.00	Date Samples Received	:21-Sep-2022 15:00
:	Date Analysis Commenced	23-Sep-2022
: 20-999848	Issue Date	:04-Oct-2022 14:51
: VS/BS		
:		
SOA		
:1		
: 1		
	 WT2215311 Terrapex Environmental Ltd. Brian Theimer 90 Scarsdale Rd. Toronto ON Canada M3B2R7 416 245 0011 CT3580.00 20-999848 VS/BS SOA 1 1 	WT2215311Page: Terrapex Environmental Ltd.Laboratory: Brian TheimerAccount Manager: 90 Scarsdale Rd.AddressToronto ON Canada M3B2R7Telephone: 416 245 0011Telephone: CT3580.00Date Samples Received:Date Analysis Commenced: 20-999848Issue Date: VS/BS: SOA1: 11

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Matrix Spike (MS) Report; Recovery and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Adam Boettger	Team Leader - LCMS	Waterloo LCMS, Waterloo, Ontario
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Waterloo Microbiology, Waterloo, Ontario
Jeremy Gingras	Team Leader - Semi-Volatile Instrumentation	Waterloo Organics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Inorganics, Waterloo, Ontario
Jon Fisher	Department Manager - Inorganics	Waterloo Metals, Waterloo, Ontario
Joseph Scharbach		Waterloo Organics, Waterloo, Ontario
Rachel Cameron	Team Leader - Semi-Volatile Organics	Waterloo Organics, Waterloo, Ontario
Sarah Birch	Team Leader - Volatiles	Waterloo Organics, Waterloo, Ontario
Stephanie Pinheiro	Analyst	Waterloo LCMS, Waterloo, Ontario

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit).

RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water							Labora	oratory Duplicate (DUP) Report			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 664754)										
WT2214813-001	Anonymous	solids, total suspended [TSS]		E160	3.0	mg/L	<3.0	<3.0	0	Diff <2x LOR	
Physical Tests (QC	Lot: 669275)										
WT2215239-009	Anonymous	рН		E108	0.10	pH units	7.98	8.00	0.250%	4%	
Anions and Nutrien	ts (QC Lot: 666023)										
WT2214791-021	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	0.050	mg/L	1.01	1.01	0.436%	20%	
Anions and Nutrien	ts (QC Lot: 666038)										
WT2214892-001	Anonymous	phosphorus, total	7723-14-0	E372-U	0.0400	mg/L	14.9	14.8	0.378%	20%	
Anions and Nutrien	ts (QC Lot: 669271)										
WT2215239-009	Anonymous	fluoride	16984-48-8	E235.F	0.020	mg/L	0.100	0.099	0.0010	Diff <2x LOR	
Anions and Nutrien	ts (QC Lot: 669272)										
WT2215239-009	Anonymous	chloride	16887-00-6	E235.CI	0.50	mg/L	43.3	43.2	0.205%	20%	
Anions and Nutrien	ts (QC Lot: 669273)										
WT2215239-009	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	0.30	mg/L	29.1	29.0	0.355%	20%	
Cyanides (QC Lot:	666273)										
WT2215061-004	Anonymous	cyanide, strong acid dissociable (total)		E333	0.0020	mg/L	<0.0020	<0.0020	0	Diff <2x LOR	
Microbiological Tes	ts (QC Lot: 662803)										
WT2215273-002	Anonymous	coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	<1	0	Diff <2x LOR	
Total Metals (QC L	ot: 664619)										
WT2215061-001	Anonymous	aluminum, total	7429-90-5	E420	0.0030	mg/L	0.0065	0.0074	0.0008	Diff <2x LOR	
		antimony, total	7440-36-0	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		arsenic, total	7440-38-2	E420	0.00010	mg/L	0.00024	0.00024	0.000007	Diff <2x LOR	
		cadmium, total	7440-43-9	E420	0.0000050	mg/L	<0.000050	<0.0000050	0	Diff <2x LOR	
		chromium, total	7440-47-3	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		cobalt, total	7440-48-4	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR	
		copper, total	7440-50-8	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		lead, total	7439-92-1	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		manganese, total	7439-96-5	E420	0.00010	mg/L	0.0177	0.0177	0.217%	20%	
		molybdenum, total	7439-98-7	E420	0.000050	mg/L	0.000089	0.000088	0.000001	Diff <2x LOR	
		nickel, total	7440-02-0	E420	0.00050	mg/L	<0.00050	<0.00050	0	Diff <2x LOR	
		selenium, total	7782-49-2	E420	0.000050	mg/L	<0.000050	<0.000050	0	Diff <2x LOR	
		silver, total	7440-22-4	E420	0.000010	mg/L	<0.000010	<0.000010	0	Diff <2x LOR	

Page	: 4 of 14
Work Order	: WT2215311
Client	: Terrapex Environmental Ltd.
Project	: CT3580.00

Sub-Matrix: Water							Labora	tory Duplicate (D	y Duplicate (DUP) Report			
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier	
Total Metals (QC Lo	t: 664619) - continued											
WT2215061-001	Anonymous	tin, total	7440-31-5	E420	0.00010	mg/L	<0.00010	<0.00010	0	Diff <2x LOR		
		titanium, total	7440-32-6	E420	0.00030	mg/L	<0.00030	<0.00030	0	Diff <2x LOR		
		zinc, total	7440-66-6	E420	0.0030	mg/L	<0.0030	<0.0030	0	Diff <2x LOR		
Total Metals (QC Lo	t: 665474)									I		
WT2215311-001	MW104A	mercury, total	7439-97-6	E508	0.0000050	mg/L	<0.0000050	<0.0000050	0	Diff <2x LOR		
Speciated Metals (C	C Lot: 665904)											
CG2212991-006	Anonymous	chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.00050	mg/L	0.00051	<0.00050	0.000006	Diff <2x LOR		
Aggregate Organics	(QC Lot: 662436)											
WT2215224-002	Anonymous	biochemical oxygen demand [BOD]		E550	3.0	mg/L	<3.0	<3.0	0.0%	30%		
Aggregate Organics	(QC Lot: 666017)											
TY2201891-001	Anonymous	phenols, total (4AAP)		E562	0.0010	mg/L	0.0074	0.0079	0.0004	Diff <2x LOR		
Volatile Organic Cor	npounds(QC Lot: 66534	43)										
TY2201905-001	Anonymous	benzene	71-43-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		chloroform	67-66-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichlorobenzene, 1,2-	95-50-1	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichlorobenzene, 1,4-	106-46-7	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichloroethylene, cis-1,2-	156-59-2	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		dichloromethane	75-09-2	E611D	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
		dichloropropylene, trans-1,3-	10061-02-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR		
		ethylbenzene	100-41-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		tetrachloroethylene	127-18-4	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		toluene	108-88-3	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		trichloroethylene	79-01-6	E611D	0.50	µg/L	<0.50	<0.50	0	Diff <2x LOR		
		xylene, m+p-	179601-23-1	E611D	0.40	µg/L	<0.40	<0.40	0	Diff <2x LOR		
		xylene, o-	95-47-6	E611D	0.30	µg/L	<0.30	<0.30	0	Diff <2x LOR		
Nonylphenols (QC I	_ot: 665346)						1					
WT2215084-001	Anonymous	nonylphenols [NP]	84852-15-3	E749A	1.0	µg/L	<1.0	<1.0	0	Diff <2x LOR		
Nonylphenols (QC L	_ot: 665347)											
WT2215084-001	Anonymous	nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.10	µg/L	<0.10	<0.10	0	Diff <2x LOR		
		nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2.0	µg/L	<2.0	<2.0	0	Diff <2x LOR		

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water						
Analyte	CAS Number	Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 664754)						
solids, total suspended [TSS]		E160	3	mg/L	<3.0	
Anions and Nutrients (QCLot: 666023)						
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	<0.050	
Anions and Nutrients (QCLot: 666038)						
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	<0.0020	
Anions and Nutrients (QCLot: 669271)						
fluoride	16984-48-8	E235.F	0.02	mg/L	<0.020	
Anions and Nutrients (QCLot: 669272)						
chloride	16887-00-6	E235.Cl	0.5	mg/L	<0.50	
Anions and Nutrients (QCLot: 669273)						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	<0.30	
Cyanides (QCLot: 666273)						
cyanide, strong acid dissociable (total)		E333	0.002	mg/L	<0.0020	
Microbiological Tests (QCLot: 662803)						
coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	<1	
Total Metals (QCLot: 664619)						
aluminum, total	7429-90-5	E420	0.003	mg/L	<0.0030	
antimony, total	7440-36-0	E420	0.0001	mg/L	<0.00010	
arsenic, total	7440-38-2	E420	0.0001	mg/L	<0.00010	
cadmium, total	7440-43-9	E420	0.000005	mg/L	<0.000050	
chromium, total	7440-47-3	E420	0.0005	mg/L	<0.00050	
cobalt, total	7440-48-4	E420	0.0001	mg/L	<0.00010	
copper, total	7440-50-8	E420	0.0005	mg/L	<0.00050	
lead, total	7439-92-1	E420	0.00005	mg/L	<0.000050	
manganese, total	7439-96-5	E420	0.0001	mg/L	<0.00010	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	<0.000050	
nickel, total	7440-02-0	E420	0.0005	mg/L	<0.00050	
selenium, total	7782-49-2	E420	0.00005	mg/L	<0.000050	
silver, total	7440-22-4	E420	0.00001	mg/L	<0.000010	
tin, total	7440-31-5	E420	0.0001	mg/L	<0.00010	
titanium, total	7440-32-6	E420	0.0003	mg/L	<0.00030	
zinc, total	7440-66-6	E420	0.003	mg/L	<0.0030	
Total Metals (QCLot: 665474)						

Page	: 6 of 14
Work Order	: WT2215311
Client	: Terrapex Environmental Ltd.
Project	; CT3580.00

Sub-Matrix: Water

Analyte	CAS Number I	Method	LOR	Unit	Result	Qualifier
Total Metals (QCLot: 665474) - continue	ed					
mercury, total	7439-97-6 E	508	0.000005	mg/L	<0.000050	
Speciated Metals (QCLot: 665904)						
chromium, hexavalent [Cr VI], total	18540-29-9 E	532	0.0005	mg/L	<0.00050	
Aggregate Organics (QCLot: 662436)						
biochemical oxygen demand [BOD]	E	550	2	mg/L	<2.0	
Aggregate Organics (QCLot: 665271)						
oil & grease (gravimetric)	E	567	5	mg/L	<5.0	
Aggregate Organics (QCLot: 665272)						
oil & grease, mineral (gravimetric)	E	567SG	5	mg/L	<5.0	
Aggregate Organics (QCLot: 666017)						
phenols, total (4AAP)	E	562	0.001	mg/L	<0.0010	
Volatile Organic Compounds (QCLot: 6	65343)					
benzene	71-43-2 E	E611D	0.5	µg/L	<0.50	
chloroform	67-66-3 E	E611D	0.5	µg/L	<0.50	
dichlorobenzene, 1,2-	95-50-1 E	E611D	0.5	µg/L	<0.50	
dichlorobenzene, 1,4-	106-46-7 E	E611D	0.5	µg/L	<0.50	
dichloroethylene, cis-1,2-	156-59-2 E	E611D	0.5	µg/L	<0.50	
dichloromethane	75-09-2 E	E611D	1	µg/L	<1.0	
dichloropropylene, trans-1,3-	10061-02-6 E	E611D	0.3	µg/L	<0.30	
ethylbenzene	100-41-4 E	E611D	0.5	µg/L	<0.50	
tetrachloroethane, 1,1,2,2-	79-34-5 E	E611D	0.5	µg/L	<0.50	
tetrachloroethylene	127-18-4 E	E611D	0.5	µg/L	<0.50	
toluene	108-88-3 E	E611D	0.5	µg/L	<0.50	
trichloroethylene	79-01-6 E	E611D	0.5	µg/L	<0.50	
xylene, m+p-	179601-23-1 E	E611D	0.4	µg/L	<0.40	
xylene, o-	95-47-6 E	E611D	0.3	µg/L	<0.30	
Polycyclic Aromatic Hydrocarbons (QC	Lot: 662255)					
dibenz(a,h)acridine	226-36-8 E	E642D	0.05	µg/L	<0.050	
dibenz(a,j)acridine	224-42-0 E	E642D	0.05	µg/L	<0.050	
dibenzo(a,i)pyrene	189-55-9 E	E642D	0.05	µg/L	<0.050	
dibenzo(c,g)carbazole, 7H-	194-59-2 E	E642D	0.05	µg/L	<0.050	
dinitropyrene, 1,3-	75321-20-9 E	E642D	1	µg/L	<1.0	
dinitropyrene, 1,6-	42397-64-8 E	E642D	1	µg/L	<1.0	
dinitropyrene, 1,8-	42397-65-9 E	E642D	1	µg/L	<1.0	
methylcholanthrene, 3-	56-49-5 E	E642D	0.05	µg/L	<0.050	
Polycyclic Aromatic Hydrocarbons (QC	Lot: 662341)					

Page	: 7 of 14
Work Order	: WT2215311
Client	: Terrapex Environmental Ltd.
Project	; CT3580.00

Sub-Matrix: Water

Analyte CAS Number	Method	LOR	Unit	Result	Qualifier
Polycyclic Aromatic Hydrocarbons (QCLot: 662341) - contin	ued				
anthracene 120-12-7	E641A-L	0.01	μg/L	<0.010	
benz(a)anthracene 56-55-3	E641A-L	0.01	μg/L	<0.010	
benzo(a)pyrene 50-32-8	E641A-L	0.005	µg/L	<0.0050	
benzo(b+j)fluoranthene n/a	E641A-L	0.01	μg/L	<0.010	
benzo(e)pyrene 192-97-2	E641A-L	0.01	μg/L	<0.010	
benzo(g,h,i)perylene 191-24-2	E641A-L	0.01	μg/L	<0.010	
benzo(k)fluoranthene 207-08-9	E641A-L	0.01	μg/L	<0.010	
chrysene 218-01-9	E641A-L	0.01	μg/L	<0.010	
dibenz(a,h)anthracene 53-70-3	E641A-L	0.005	μg/L	<0.0050	
fluoranthene 206-44-0	E641A-L	0.01	μg/L	<0.010	
indeno(1,2,3-c,d)pyrene 193-39-5	E641A-L	0.01	μg/L	<0.010	
perylene 198-55-0	E641A-L	0.01	μg/L	<0.010	
phenanthrene 85-01-8	E641A-L	0.01	μg/L	<0.010	
pyrene 129-00-0	E641A-L	0.01	μg/L	<0.010	
Phthalate Esters (QCLot: 662259)					
bis(2-ethylhexyl) phthalate [DEHP] 117-81-7	E655F	2	μg/L	<2.0	
di-n-butyl phthalate 84-74-2	E655F	1	μg/L	<1.0	
Semi-Volatile Organics (QCLot: 662259)					
dichlorobenzidine, 3,3'- 91-94-1	E655F	0.4	μg/L	<0.40	
Chlorinated Phenolics (QCLot: 662259)		3 1 1			
pentachlorophenol [PCP] 87-86-5	E655F	0.5	µg/L	<0.50	
Nonylphenols (QCLot: 665346)		3 C C			
nonylphenols [NP] 84852-15-3	E749A	1	µg/L	<1.0	
Nonylphenols (QCLot: 665347)					
nonylphenol diethoxylates [NP2EO] n/a	E749B	0.1	µg/L	<0.10	
nonylphenol monoethoxylates [NP1EO] n/a	E749B	2	µg/L	<2.0	
Polychlorinated Biphenyls (QCLot: 666138)					
Aroclor 1016 12674-11-2	E687	0.02	µg/L	<0.020	
Aroclor 1221 11104-28-2	E687	0.02	µg/L	<0.020	
Aroclor 1232 11141-16-5	E687	0.02	μg/L	<0.020	
Aroclor 1242 53469-21-9	E687	0.02	µg/L	<0.020	
Aroclor 1248 12672-29-6	E687	0.02	µg/L	<0.020	
Aroclor 1254 11097-69-1	E687	0.02	µg/L	<0.020	
Aroclor 1260 11096-82-5	E687	0.02	µg/L	<0.020	
Aroclor 1262 37324-23-5	E687	0.02	µg/L	<0.020	
Aroclor 1268 11100-14-4	E687	0.02	µg/L	<0.020	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report				
					Spike	Recovery (%)	Recovery	/ Limits (%)	
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Physical Tests (QCLot: 664754)			1						
solids, total suspended [TSS]		E160	3	mg/L	150 mg/L	110	85.0	115	
Physical Tests (QCLot: 669275)									
рн		E108		pH units	7 pH units	101	98.0	102	
Anions and Nutrients (QCLot: 666023)			-						
Kjeldahl nitrogen, total [TKN]		E318	0.05	mg/L	4 mg/L	100	75.0	125	
Anions and Nutrients (QCLot: 666038)									
phosphorus, total	7723-14-0	E372-U	0.002	mg/L	0.53 mg/L	98.8	80.0	120	
Anions and Nutrients (QCLot: 669271)									
fluoride	16984-48-8	E235.F	0.02	mg/L	1 mg/L	101	90.0	110	
Anions and Nutrients (QCLot: 669272)									
chloride	16887-00-6	E235.CI	0.5	mg/L	100 mg/L	102	90.0	110	
Anions and Nutrients (QCLot: 669273)			-						
sulfate (as SO4)	14808-79-8	E235.SO4	0.3	mg/L	100 mg/L	102	90.0	110	
Cvanides (QCLot: 666273)		_							1
cyanide, strong acid dissociable (total)		E333	0.002	mg/L	0.25 mg/L	88.3	80.0	120	
Total Metals (QCI of: 664619)									1
aluminum, total	7429-90-5	E420	0.003	mg/L	0.1 mg/L	102	80.0	120	
antimony, total	7440-36-0	E420	0.0001	mg/L	0.05 mg/L	99.1	80.0	120	
arsenic, total	7440-38-2	E420	0.0001	mg/L	0.05 mg/L	99.8	80.0	120	
cadmium, total	7440-43-9	E420	0.000005	mg/L	0.005 mg/L	102	80.0	120	
chromium, total	7440-47-3	E420	0.0005	mg/L	0.0125 mg/L	100	80.0	120	
cobalt, total	7440-48-4	E420	0.0001	mg/L	0.0125 mg/L	101	80.0	120	
copper, total	7440-50-8	E420	0.0005	mg/L	0.0125 mg/L	99.3	80.0	120	
lead, total	7439-92-1	E420	0.00005	mg/L	0.025 mg/L	99.3	80.0	120	
manganese, total	7439-96-5	E420	0.0001	mg/L	0.0125 mg/L	99.3	80.0	120	
molybdenum, total	7439-98-7	E420	0.00005	mg/L	0.0125 mg/L	93.7	80.0	120	
nickel, total	7440-02-0	E420	0.0005	mg/L	0.025 mg/L	101	80.0	120	
selenium, total	7782-49-2	E420	0.00005	mg/L	0.05 mg/L	101	80.0	120	
silver, total	7440-22-4	E420	0.00001	mg/L	0.005 mg/L	98.4	80.0	120	
tin, total	7440-31-5	E420	0.0001	mg/L	0.025 mg/L	92.6	80.0	120	
titanium, total	7440-32-6	E420	0.0003	mg/L	0.0125 mg/L	95.3	80.0	120	

Page	: 10 of 14
Work Order	: WT2215311
Client	: Terrapex Environmental Ltd.
Project	· CT3580.00

Sub-Matrix: Water			Laboratory Control Sample (LCS) Report					
				Spike	Recovery Limits (%)			
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Total Metals (QCLot: 664619) -contir	nued							
zinc, total	7440-66-6 E420	0.003	mg/L	0.025 mg/L	98.6	80.0	120	
Total Metals (QCLot: 665474)			_					
mercury, total	7439-97-6 E508	0.000005	mg/L	0.0001 mg/L	102	80.0	120	
Speciated Metals (QCLot: 665904)								
chromium, hexavalent [Cr VI], total	18540-29-9 E532	0.0005	mg/L	0.025 mg/L	99.3	80.0	120	
Aggregate Organics (QCLot: 662436)								
biochemical oxygen demand [BOD]	E550	2	mg/L	198 mg/L	88.7	85.0	115	
Aggregate Organics (QCLot: 665271)								
pil & grease (gravimetric)	E567	5	mg/L	200 mg/L	82.8	70.0	130	
Aggregate Organics (QCLot: 665272)								
oil & grease, mineral (gravimetric)	E567SG	5	mg/L	100 mg/L	77.9	70.0	130	
Aggregate Organics (QCLot: 666017)								1
ohenols, total (4AAP)	E562	0.001	mg/L	0.02 mg/L	111	85.0	115	
Volatile Organic Compounds (QCLot	: 665343)							
benzene	71-43-2 E611D	0.5	µg/L	100 µg/L	106	70.0	130	
chloroform	67-66-3 E611D	0.5	µg/L	100 µg/L	102	70.0	130	
dichlorobenzene, 1,2-	95-50-1 E611D	0.5	µg/L	100 µg/L	94.2	70.0	130	
dichlorobenzene, 1,4-	106-46-7 E611D	0.5	µg/L	100 µg/L	96.6	70.0	130	
dichloroethylene, cis-1,2-	156-59-2 E611D	0.5	µg/L	100 µg/L	99.8	70.0	130	
dichloromethane	75-09-2 E611D	1	µg/L	100 µg/L	116	70.0	130	
dichloropropylene, trans-1,3-	10061-02-6 E611D	0.3	µg/L	100 µg/L	93.0	70.0	130	
ethylbenzene	100-41-4 E611D	0.5	µg/L	100 µg/L	96.9	70.0	130	
etrachloroethane, 1,1,2,2-	79-34-5 E611D	0.5	µg/L	100 µg/L	106	70.0	130	
tetrachloroethylene	127-18-4 E611D	0.5	μg/L	100 µg/L	90.3	70.0	130	
oluene	108-88-3 E611D	0.5	µg/L	100 µg/L	99.5	70.0	130	
richloroethylene	79-01-6 E611D	0.5	µg/L	100 µg/L	90.3	70.0	130	
kylene, m+p-	179601-23-1 E611D	0.4	μg/L	200 µg/L	96.2	70.0	130	
kylene, o-	95-47-6 E611D	0.3	μg/L	100 µg/L	97.2	70.0	130	
, .								
Polycyclic Aromatic Hydrocarbons (C	QCLot: 662255)					00.5	400	
dibenz(a,h)acridine	226-36-8 E642D	0.05	μg/L "	1.6 µg/L	106	60.0	130	
dibenz(a,j)acridine	224-42-0 E642D	0.05	µg/L	1.6 µg/L	110	60.0	130	
dibenzo(a,i)pyrene	189-55-9 E642D	0.05	µg/L	1.6 µg/L	86.8	60.0	130	
dibenzo(c,g)carbazole, 7H-	194-59-2 E642D	0.05	μg/L	1.6 µg/L	110	60.0	130	

Page	: 11 of 14
Work Order	: WT2215311
Client	: Terrapex Environmental Ltd.
Project	; CT3580.00

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Spike Recovery (%) Recovery Limits (%)				
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier
Polycyclic Aromatic Hydrocarbons (QCLot: 6	662255) - continue	d	.						
dinitropyrene, 1,3-	75321-20-9	E642D	1	µg/L	1.6 µg/L	114	60.0	130	
dinitropyrene, 1,6-	42397-64-8	E642D	1	µg/L	1.6 µg/L	78.9	60.0	130	
dinitropyrene, 1,8-	42397-65-9	E642D	1	µg/L	1.6 µg/L	93.3	60.0	130	
methylcholanthrene, 3-	56-49-5	E642D	0.05	µg/L	1.6 µg/L	# 164	60.0	130	LCS-H
Polycyclic Aromatic Hydrocarbons (QCLot: 6	62341)								
anthracene	120-12-7	E641A-L	0.01	µg/L	0.5263 µg/L	93.9	50.0	140	
benz(a)anthracene	56-55-3	E641A-L	0.01	µg/L	0.5263 µg/L	123	50.0	140	
benzo(a)pyrene	50-32-8	E641A-L	0.005	µg/L	0.5263 µg/L	113	50.0	140	
benzo(b+j)fluoranthene	n/a	E641A-L	0.01	µg/L	0.5263 µg/L	118	50.0	140	
benzo(e)pyrene	192-97-2	E641A-L	0.01	µg/L	0.5263 µg/L	120	50.0	140	
benzo(g,h,i)perylene	191-24-2	E641A-L	0.01	µg/L	0.5263 µg/L	130	50.0	140	
benzo(k)fluoranthene	207-08-9	E641A-L	0.01	µg/L	0.5263 µg/L	116	50.0	140	
chrysene	218-01-9	E641A-L	0.01	µg/L	0.5263 µg/L	128	50.0	140	
dibenz(a,h)anthracene	53-70-3	E641A-L	0.005	µg/L	0.5263 µg/L	126	50.0	140	
fluoranthene	206-44-0	E641A-L	0.01	µg/L	0.5263 µg/L	133	50.0	140	
indeno(1,2,3-c,d)pyrene	193-39-5	E641A-L	0.01	µg/L	0.5263 µg/L	129	50.0	140	
perylene	198-55-0	E641A-L	0.01	µg/L	0.5263 µg/L	129	50.0	140	
phenanthrene	85-01-8	E641A-L	0.01	µg/L	0.5263 µg/L	120	50.0	140	
pyrene	129-00-0	E641A-L	0.01	µg/L	0.5263 µa/L	136	50.0	140	
Phthalate Esters (QCL ot: 662259)		_							
bis(2-ethylhexyl) phthalate [DEHP]	117-81-7	E655F	2	µg/L	6.4 µg/L	112	50.0	140	
di-n-butyl phthalate	84-74-2	E655F	1	µg/L	6.4 µg/L	114	50.0	140	
Semi-Volatile Organics (QCLot: 662259)									
dichlorobenzidine, 3,3'-	91-94-1	E655F	0.4	µg/L	1.6 µg/L	# 39.9	50.0	140	RRQC
Chlorinated Phenolics (QCLot: 662259)			100						
pentachlorophenol [PCP]	87-86-5	E655F	0.5	μg/L	4.8 μg/L	# 148	50.0	140	LCS-H
Nonvinhenois (OCI of: 665346)									
nonylphenols [NP]	84852-15-3	E749A	1	µg/L	10 µg/L	107	75.0	125	
Nonylphenols (QCLot: 665347)									
nonylphenol diethoxylates [NP2EO]	n/a	E749B	0.1	µg/L	1 µg/L	104	75.0	125	
nonylphenol monoethoxylates [NP1EO]	n/a	E749B	2	µg/L	20 µg/L	108	75.0	125	
Polychlorinated Biphenyls (QCLot: 666138)			1						
Aroclor 1016	12674-11-2	E687	0.02	µg/L	0.2 µg/L	107	60.0	140	

Page	: 12 of 14
Work Order	: WT2215311
Client	: Terrapex Environmental Ltd.
Project	; CT3580.00

RRQC

Sub-Matrix: Water					Laboratory Control Sample (LCS) Report					
					Spike	Recovery (%)	Recovery	/ Limits (%)		
Analyte	CAS Number	Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Polychlorinated Biphenyls (QCLot: 666138) - continued									
Aroclor 1221	11104-28-2	E687	0.02	µg/L	0.2 μg/L	107	60.0	140		
Aroclor 1232	11141-16-5	E687	0.02	µg/L	0.2 µg/L	107	60.0	140		
Aroclor 1242	53469-21-9	E687	0.02	µg/L	0.2 µg/L	107	60.0	140		
Aroclor 1248	12672-29-6	E687	0.02	µg/L	0.2 µg/L	90.5	60.0	140		
Aroclor 1254	11097-69-1	E687	0.02	µg/L	0.2 µg/L	110	60.0	140		
Aroclor 1260	11096-82-5	E687	0.02	µg/L	0.2 µg/L	104	60.0	140		
Aroclor 1262	37324-23-5	E687	0.02	µg/L	0.2 µg/L	104	60.0	140		
Aroclor 1268	11100-14-4	E687	0.02	µg/L	0.2 μg/L	104	60.0	140		
Qualifiers	I			<u> </u>						
Qualifier	Description									
LCS-H	Lab Control Sample recove	Lab Control Sample recovery was above ALS DQO. Non-detected sample results are considered reliable. Other results, if reported, have been qualified.								

Refer to report comments for information regarding this QC result.

Matrix Spike (MS) Report

A Matrix Spike (MS) is a randomly selected intra-laboratory replicate sample that has been fortified (spiked) with test analytes at known concentration, and processed in an identical manner to test samples. Matrix Spikes provide information regarding analyte recovery and potential matrix effects. MS DQO exceedances due to sample matrix may sometimes be unavoidable; in such cases, test results for the associated sample (or similar samples) may be subject to bias. ND – Recovery not determined, background level >= 1x spike level.

ClanctrongyClanctro	Sub-Matrix: Water					Matrix Spike (MS) Report						
<table-container>Likhong nample D D P<b< th=""><th></th><th></th><th></th><th></th><th></th><th>Sp</th><th>ike</th><th>Recovery (%)</th><th>Recovery</th><th>Limits (%)</th><th></th></b<></table-container>						Sp	ike	Recovery (%)	Recovery	Limits (%)		
Anions and Nutrients(QCLot: 686023)(Secalar incorpor. bolic [TNN]E3192.46 mpl.2.6 mpl.0.98.470.010.01NUT231798-021Morrymous(presphorus, lobal (TNN)7729-14-0E372-14-0NB mpl.0.1 mpl.NB70.013.0NUT2317982-031Morrymous(presphorus, lobal 7729-14-0E372-14-0NB mpl.0.1 mpl.NB70.013.0Anions and Nutrients(Coll-to: 69271)V12215378-006Morrymous(brinding coll and coll	Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier	
WT2214970-021MonymentModelalititizity, total ControlS192.6 dengts2.6 engl.9.6.47.0.01.0.0AnomaMonymentMonyhon, IsolaMonyhon, Isola7.723.4.0S7.24.4.0S7.24.4.0S7.24.4.0N.0.01.0.1.0N.0.07.0.07.0.01.0.5MV221489.2.00MonymentMonyhon, IsolaMondeS7.24.4.0S7.24.4.	Anions and Nutr	ients (QCLot: 666023)										
Anonymosephosphona; tela7723-14-00SD2-UND magle0.1 mgLND MND </td <td>WT2214791-021</td> <td>Anonymous</td> <td>Kjeldahl nitrogen, total [TKN]</td> <td></td> <td>E318</td> <td>2.46 mg/L</td> <td>2.5 mg/L</td> <td>98.4</td> <td>70.0</td> <td>130</td> <td></td>	WT2214791-021	Anonymous	Kjeldahl nitrogen, total [TKN]		E318	2.46 mg/L	2.5 mg/L	98.4	70.0	130		
MYT2214882.001Monymukphosphonuk, lokal7723-14-0E32-UN0 mgl,0.1 mgl,NDND70.0100100AnionaMonymukBourde16884-46.8E32.5C0.988 mgl,1 mgl,189.90.70.0125.0125.0Aniona and Nutri-VECCLOCI: 669273)Witzels283-000Along and a diale (as SOA)16887-06-8E23.5C I100 mgl,100 mgl,100.0100.0125.0I.25.0I	Anions and Nutr	ients (QCLot: 666038)										
Anions and Nutrients OC/Cloci 669271 VIT221538009 Nomymous Nordré 16884-48.8 6235.F. 0.388 mgl. 1 mgl. 98.9 75.0 128	WT2214892-001	Anonymous	phosphorus, total	7723-14-0	E372-U	ND mg/L	0.1 mg/L	ND	70.0	130		
VT221523:009NonymoundNonigonalNongeneNong	Anions and Nutr	ients (QCLot: 669271)										
Anions and Nutrivers UUse UUSU UWT221839.009Anonymousaldade (as SO4)1887-00-6E235.CI100 mgL10075.0125.6Anions and Nutrivers (CCL01: 669273)WT22153961-004Anonymouscyanide, strong acid dissociable (nois)E235.SCI8.8.7 mgL100.mgL98.775.0125.125.Classical dissociable (nois)E330.24 mgL0.25 mgL88.575.0126Total Metals (ACC-U664019)E400.103 mgL0.103 mgL100.100.130WT2153961-002Anonymousalminum, fuel740-36-0E400.103 mgL0.05 mgL106.70.0130WT2153961-002Anonymousalminum, fuel740-36-0E400.058 mgL0.05 mgL108.70.0130MT215981-002Anonymousalminum, fuel740-36-0E400.058 mgL0.058 mgL102.70.0130Oper-1/Ling (Colspan="4">Anonymousanesen, fuel740-36-0E400.012 mgL0.012 mgL101.070.0130Oper-1/Ling (Colspan="4">Oper-1/Ling (C	WT2215239-009	Anonymous	fluoride	16984-48-8	E235.F	0.989 mg/L	1 mg/L	98.9	75.0	125		
WT2215929-09 Anonymous chloride 18897-09.6 E235.Cl 100 mg/L 100 75.0 125 Anions and Nutrients (QCLot: 669273) suffale (as SO4) 1408-79-8 E235.SO4 98.7 mg/L 100 mg/L 98.7 75.0 125 VT221506104 Anonymous cyanide, strong add dissociable (total) E333 0.224 mg/L 0.25 mg/L 89.5 75.0 125 VT2215061-02 Anonymous cyanide, strong add dissociable (total) E333 0.224 mg/L 0.55 mg/L 108.5 75.0 125 VT2215061-002 Anonymous aluminum, total 7249-95.5 E420 0.0529 mg/L 0.05 mg/L 108 70.0 130 WT2215061-002 Anonymous aluminum, total 7249-95.5 E420 0.0589 mg/L 0.056 mg/L 108 70.0 130 WT2215061-002 Anonymous aluminum, total 7240-83.6 E420 0.0125 mg/L 0.0125 mg/L <t< td=""><td>Anions and Nutr</td><td>ients (QCLot: 669272)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Anions and Nutr	ients (QCLot: 669272)										
Aniona and Nutrieves VIC21502-000 Montymous guildle (as SO4) 14808-79-88 E235.SO4 987 mgL 100 mg/L 98.77 75.0 125 Cyanizes Cervanizes Several discontrational discontratinal discontrational discontrational discontrational disc	WT2215239-009	Anonymous	chloride	16887-00-6	E235.Cl	100 mg/L	100 mg/L	100	75.0	125		
WT2215239-009 Anonymous suifate (as SC4) 14808-79-8 E23S.SO4 98.7 mg/L 100 mg/L 98.7 75.0 125 Cyanides (QCLot: 666273)	Anions and Nutr	ients (QCLot: 669273)										
Cyanides (QCL ot: 666273) WT2215061-004 Anonymous oyanide, strong acid dissociable (total) E333 0.22 k mg/L 0.25 mg/L 0.89.5 75.0 125 VT2215061-002 Anonymous oyanide, strong acid dissociable (total) 742940-5 E420 0.103 mg/L 0.1 mg/L 103 70.0 130 WT2215061-002 Anonymous atuminum, total 7440-35-0 E420 0.058 mg/L 0.05 mg/L 106 70.0 130 UT215061-002 Anonymous atuminum, total 7440-35-0 E420 0.058 mg/L 0.05 mg/L 106 70.0 130 UT215061-002 Anonymous atuminum, total 7440-45-0 E420 0.0053 mg/L 0.05 mg/L 108 70.0 130 UT215061-002 diadition 7440-45-0 E420 0.0125 mg/L 0.012 70.0 130 utaritimory, total 7440-45-8 E420 0.0125 mg/L 0.0125 mg/L 0.012 70	WT2215239-009	Anonymous	sulfate (as SO4)	14808-79-8	E235.SO4	98.7 mg/L	100 mg/L	98.7	75.0	125		
WT2215061-004 Anonymous cyanide, strong acid dissociable (total) E333 0.224 mg/L 0.25 mg/L 89.5 75.0 125 Total Metals (QC-t: 664619)	Cyanides (QCLo	ot: 666273)										
Total Metals (QCL-v: 664619) Busice view Second view Secon	WT2215061-004	Anonymous	cyanide, strong acid dissociable (total)		E333	0.224 mg/L	0.25 mg/L	89.5	75.0	125		
WT2215061-002 Anonymous aluminum, total 7429-90-5 E420 0.103 mg/L 0.1 mg/L 103 70.0 130 antimory, total 7440-36-0 E420 0.052 mg/L 0.05 mg/L 106 70.0 130 antimory, total 7440-36-0 E420 0.050 mg/L 0.05 mg/L 102 70.0 130 cadmium, total 7440-43-0 E420 0.0503 mg/L 0.052 mg/L 103 70.0 130 chromium, total 7440-47-3 E420 0.0125 mg/L 0.0125 mg/L 103 70.0 130 cobait, total 7440-47-3 E420 0.0125 mg/L 0.0125 mg/L 102 70.0 130 cobait, total 7440-50-8 E420 0.0125 mg/L 0.0125 mg/L 102 70.0 130 magnases,total 7439-92-1 E420 0.0125 mg/L 0.0125 mg/L 100 70.0 130 molydnemu, total	Total Metals (QC	CLot: 664619)										
Image animony, total 7440-36-0 E420 0.0529 mg/L 0.05 mg/L 106 70.0 130 arsenic, total 7440-38-2 E420 0.0509 mg/L 0.05 mg/L 102 70.0 130 cadmium, total 7440-43-9 E420 0.00531 mg/L 0.015 mg/L 106 70.0 130 cobalt, total 7440-47-3 E420 0.0125 mg/L 0.0125 mg/L 1030 70.0 130 cobalt, total 7440-47-3 E420 0.0125 mg/L 0.0125 mg/L 102 70.0 130 cobalt, total 7440-450-8 E420 0.0125 mg/L 0.0125 mg/L 102 70.0 130 cobalt, total 7440-50-8 E420 0.0125 mg/L 0.0125 mg/L 102 70.0 130 manganese, total 7439-96-7 E420 0.0125 mg/L 0.0125 mg/L 1010 70.0 130 molyddenum, total 7440-22<	WT2215061-002	Anonymous	aluminum, total	7429-90-5	E420	0.103 mg/L	0.1 mg/L	103	70.0	130		
Image: Normal Section arsenic, total 7440-38-2 E420 0.0509 mg/L 0.050 mg/L 102 70.0 130			antimony, total	7440-36-0	E420	0.0529 mg/L	0.05 mg/L	106	70.0	130		
Image: space with the space withe space with the space with the space with the space wit			arsenic, total	7440-38-2	E420	0.0509 mg/L	0.05 mg/L	102	70.0	130		
Image: space with the space			cadmium, total	7440-43-9	E420	0.00531 mg/L	0.005 mg/L	106	70.0	130		
Marking cobalt, total 7440-84.4 E420 0.0127 mg/L 0.0125 mg/L 102 70.0 130 copper, total 7440-50.8 E420 0.0125 mg/L 0.0125 mg/L 99.9 70.0 130 lead, total 7439-92.1 E420 0.025 mg/L 0.0125 mg/L 97.40 70.00 130 manganese, total 7439-95.7 E420 0.0125 mg/L 0.0125 mg/L 97.40 70.00 130 molydenum, total 7439-95.7 E420 0.0125 mg/L 0.0125 mg/L 100 70.00 130 nickel, total 740-02.0 E420 0.0125 mg/L 0.012 101 70.00 130 selenium, total 7782-49.2 E420 0.0519 mg/L 0.05 mg/L 104 70.00 130 silver, total 740-22.4 E420 0.0519 mg/L 0.050 mg/L 104 70.00 130 titanium, total 740-32.6			chromium, total	7440-47-3	E420	0.0129 mg/L	0.0125 mg/L	103	70.0	130		
Propertion opper, total 7440-50-8 E420 0.0125 mg/L 0.99.9 70.0 130			cobalt, total	7440-48-4	E420	0.0127 mg/L	0.0125 mg/L	102	70.0	130		
Image with and w			copper, total	7440-50-8	E420	0.0125 mg/L	0.0125 mg/L	99.9	70.0	130		
Manganese, total 7439-96-5 E420 0.0122 mg/L 0.0125 mg/L 97.4 70.0 130 molybdenum, total 7439-98-7 E420 0.0125 mg/L 0.0125 mg/L 100 70.0 130 nickel, total 740-02-0 E420 0.025 mg/L 0.025 mg/L 102 70.0 130 selenium, total 7782-49-2 E420 0.051 mg/L 0.05 mg/L 104 70.0 130 silver, total 740-02-0 E420 0.051 mg/L 0.05 mg/L 104 70.0 130 silver, total 740-22.4 E420 0.051 mg/L 0.05 mg/L 104 70.0 130 tin, total 740-32-6 E420 0.024 mg/L 0.025 mg/L 99.2 70.0 130 titanium, total 740-63-6 E420 0.024 mg/L 0.025 mg/L 99.1 70.0 130 Total Kets/Ck-t: 665474 Exec E420 0.0			lead, total	7439-92-1	E420	0.0254 mg/L	0.025 mg/L	102	70.0	130		
Molydenum, total 7439-96-7 E420 0.0125 mg/L 0100 70.0 130 nickel, total 740-02-0 E420 0.0256 mg/L 0.025 mg/L 102 70.0 130 selenium, total 7782-49-2 E420 0.0519 mg/L 0.055 mg/L 104 70.0 130 silver, total 740-02-4 E420 0.0521 mg/L 0.005 mg/L 104 70.0 130 tin, total 740-02-4 E420 0.00521 mg/L 0.005 mg/L 104 70.0 130 tin, total 740-31-5 E420 0.0248 mg/L 0.025 mg/L 99.2 70.0 130 tin, total 740-31-5 E420 0.0124 mg/L 0.0125 mg/L 99.1 70.0 130 tin, total 740-66-6 E420 0.0241 mg/L 0.0125 mg/L 96.3 70.0 130 Total Wetzls Vetzls Yetzls Yetzls Yetzls			manganese, total	7439-96-5	E420	0.0122 mg/L	0.0125 mg/L	97.4	70.0	130		
Matrix Maximal Matrix			molybdenum, total	7439-98-7	E420	0.0125 mg/L	0.0125 mg/L	100	70.0	130		
Image: seland			nickel, total	7440-02-0	E420	0.0256 mg/L	0.025 mg/L	102	70.0	130		
silver, total 7440-22-4 E420 0.00521 mg/L 0.005 mg/L 104 70.0 130 in, total 7440-31-5 E420 0.0248 mg/L 0.025 mg/L 99.2 70.0 130 itinanium, total 7440-32-6 E420 0.0124 mg/L 0.0125 mg/L 99.2 70.0 130 itinanium, total 7440-66-6 E420 0.0241 mg/L 0.025 mg/L 96.3 70.0 130 Total Metals (QC-V: 665474) F665474) F665474 F665474 568 0.000964 mg/L 0.001 mg/L 96.4 70.0 130			selenium, total	7782-49-2	E420	0.0519 mg/L	0.05 mg/L	104	70.0	130		
Image: height being			silver, total	7440-22-4	E420	0.00521 mg/L	0.005 mg/L	104	70.0	130		
titanium, total 7440-32-6 E420 0.0124 mg/L 0.0125 mg/L 99.1 70.0 130 Total Metals (QCLot: 665474) 7400-66-0 E420 0.024 mg/L 0.025 mg/L 99.1 70.0 130 WT2215346-001 Anonymous mercury, total 7439-97-6 E508 0.000964 mg/L 0.001 mg/L 99.4 70.0 130			tin, total	7440-31-5	E420	0.0248 mg/L	0.025 mg/L	99.2	70.0	130		
Image: state			titanium, total	7440-32-6	E420	0.0124 mg/L	0.0125 mg/L	99.1	70.0	130		
Total Metals (QC Lot: 665474) Management Mathematical Mathmathmatical Mathematical			zinc, total	7440-66-6	E420	0.0241 mg/L	0.025 mg/L	96.3	70.0	130		
WT2215346-001 Anonymous mercury, total 7439-97-6 E508 0.0000964 mg/L 0.0001 mg/L 96.4 70.0 130	Total Metals (QC	CLot: 665474)										
	WT2215346-001	Anonymous	mercury, total	7439-97-6	E508	0.0000964 mg/L	0.0001 mg/L	96.4	70.0	130		

Page	: 14 of 14
Work Order	: WT2215311
Client	: Terrapex Environmental Ltd.
Project	: CT3580.00

Sub-Matrix: Water				Matrix Spike (MS) Report						
					Spi	ke	Recovery (%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	Concentration	Target	MS	Low	High	Qualifier
Speciated Metals	(QCLot: 665904)									
CG2212991-006	Anonymous	chromium, hexavalent [Cr VI], total	18540-29-9	E532	0.0406 mg/L	0.04 mg/L	102	70.0	130	
Aggregate Organ	ics (QCLot: 666017)									
TY2201891-001	Anonymous	phenols, total (4AAP)		E562	0.0212 mg/L	0.02 mg/L	106	75.0	125	
Volatile Organic (Compounds (QCLot: 66	5343)								
TY2201905-001	Anonymous	benzene	71-43-2	E611D	95.1 µg/L	100 µg/L	95.1	60.0	140	
		chloroform	67-66-3	E611D	91.2 µg/L	100 µg/L	91.2	60.0	140	
		dichlorobenzene, 1,2-	95-50-1	E611D	86.8 µg/L	100 µg/L	86.8	60.0	140	
		dichlorobenzene, 1,4-	106-46-7	E611D	90.0 µg/L	100 µg/L	90.0	60.0	140	
		dichloroethylene, cis-1,2-	156-59-2	E611D	88.3 µg/L	100 µg/L	88.3	60.0	140	
		dichloromethane	75-09-2	E611D	102 µg/L	100 µg/L	102	60.0	140	
		dichloropropylene, trans-1,3-	10061-02-6	E611D	84.9 µg/L	100 µg/L	84.9	60.0	140	
		ethylbenzene	100-41-4	E611D	89.5 µg/L	100 µg/L	89.5	60.0	140	
		tetrachloroethane, 1,1,2,2-	79-34-5	E611D	95.1 μg/L	100 µg/L	95.1	60.0	140	
		tetrachloroethylene	127-18-4	E611D	82.4 µg/L	100 µg/L	82.4	60.0	140	
		toluene	108-88-3	E611D	91.4 µg/L	100 µg/L	91.4	60.0	140	
		trichloroethylene	79-01-6	E611D	80.7 µg/L	100 µg/L	80.7	60.0	140	
		xylene, m+p-	179601-23-1	E611D	179 µg/L	200 µg/L	89.5	60.0	140	
		xylene, o-	95-47-6	E611D	89.7 µg/L	100 µg/L	89.7	60.0	140	
Nonylphenols (Q	CLot: 665346)									
WT2215084-001	Anonymous	nonylphenols [NP]	84852-15-3	E749A	9.6 µg/L	10 µg/L	95.7	60.0	140	
Nonylphenols (Q	CLot: 665347)									
WT2215084-001	Anonymous	nonylphenol diethoxylates [NP2EO]	n/a	E749B	1.05 µg/L	1 µg/L	105	60.0	140	
		nonylphenol monoethoxylates [NP1EO]	n/a	E749B	15.1 µg/L	20 µg/L	75.4	60.0	140	

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

			· · · · · · · · · · · · · · · · · · ·
Work Order	· WT2216451	Page	: 1 of 3
Client	: Terrapex Environmental Ltd.	Laboratory	: Waterloo - Environmental
Contact	: Brian Theimer	Account Manager	: Gayle Braun
Address	: 90 Scarsdale Rd.	Address	: 60 Northland Road, Unit 1
	Toronto ON Canada M3B2R7		Waterloo, Ontario Canada N2V 2B8
Telephone	: 416 245 0011	Telephone	: +1 519 886 6910
Project	: CT3580.00	Date Samples Received	: 03-Oct-2022 14:45
PO	:	Date Analysis Commenced	: 04-Oct-2022
C-O-C number	: 20-1007992	Issue Date	: 12-Oct-2022 11:33
Sampler	: WN/ PB		
Site	:		
Quote number	: SOA		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non -infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
CFU/100mL	colony forming units per 100 mL
mg/L	milligrams per litre

>: greater than.

<: less than.

Red shading is applied where the result is greater than the Guideline Upper Limit or the result is lower than the Guideline Lower Limit.

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Analytical Results

			Client sample ID	MW104A					
Sub-Matrix: Groundwater		Si	ampling date/time	03-Oct-2022					
(Matrix: Water)			, ,	12:15					
Analyte	Method	LOR	Unit	WT2216451-001	TORSUB	TORSUB			
					SAN STM		STM		
Physical Tests									
solids, total suspended [TSS]	E160	3.0	mg/L	8.1	350 mg/L	15 mg/L			
Microbiological Tests			·						
coliforms, Escherichia coli [E.	E012A.EC	1	CFU/100mL	35		200 CFU/100mL			
coli]									
Aggregate Organics									
biochemical oxygen demand	E550	2.0	mg/L	3.1	300 mg/L	15 mg/L			
[BOD]									

Please refer to the General Comments section for an explanation of any qualifiers detected.

No Breaches Found

Key:

TORSUB	Ontario Toronto Sanitary Discharge Sewer By-Law 100-2016 (FEB 4,2016)
SAN	Toronto Sanitary Discharge Sewer By-Law
STM	Toronto Storm Discharge Sewer By-Law

CERTIFICATE OF ANALYSIS (GUIDELINE EVALUATION)

Work Order	: WT2216451	Page	: 1 of 3
Client	: Terrapex Environmental Ltd.	Laboratory	: Waterloo - Environmental
Contact	: Brian Theimer	Account Manager	E Gayle Braun
Address	: 90 Scarsdale Rd. Toronto ON Canada M3B2R7	Address	: 60 Northland Road, Unit 1 Waterloo, Ontario Canada N2V 2B8
Telephone	: 416 245 0011	Telephone	: +1 519 886 6910
Project	: CT3580.00	Date Samples Received	: 03-Oct-2022 14:45
PO	:	Date Analysis Commenced	: 04-Oct-2022
C-O-C number	: 20-1007992	Issue Date	: 12-Oct-2022 11:33
Sampler	: WN/ PB		
Site	:		
Quote number	: SOA		
No. of samples received	: 1		
No. of samples analysed	: 1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Guideline Comparison

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QC Interpretive report to assist with Quality Review and Sample Receipt Notification (SRN).

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Microbiology, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Inorganics, Waterloo, Ontario

No Breaches Found

General Comments

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Refer to the ALS Quality Control Interpretive report (QCI) for applicable references and methodology summaries. Reference methods may incorporate modifications to improve performance.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non -infringement. ALS assumes no responsibility for errors or omissions in the information. Guidelines are not adjusted for the hardness, pH or temperature of the sample (the most conservative values are used). Measurement uncertainty is not applied to test results prior to comparison with specified criteria values.

Key : LOR: Limit of Reporting (detection limit).

Unit	Description
CFU/100mL	colony forming units per 100 mL
mg/L	milligrams per litre

>: greater than.

<: less than.

Red shading is applied where the result is greater than the Guideline Upper Limit or the result is lower than the Guideline Lower Limit.

For drinking water samples, Red shading is applied where the result for E.coli, fecal or total coliforms is greater than or equal to the Guideline Upper Limit.

Analytical Results Evaluation

Materia Oracia tanta	Client sample I	MW104A	 	 	
Matrix: Groundwater	Sampling date/tim	03-Oct-2022 12:15	 	 	
	Sub-Matri	Groundwater	 	 	
Analyte	CAS Number Unit	WT2216451-001	 	 	
Physical Tests					
solids, total suspended [TSS]	mg/L	8.1	 	 	
Microbiological Tests					
coliforms, Escherichia coli [E. coli]	CFU/100m	35	 	 	
Aggregate Organics					
biochemical oxygen demand [BOD]	mg/L	3.1	 	 	

Please refer to the General Comments section for an explanation of any qualifiers detected.

Summary of Guideline Limits

Analyte	CAS Number	Unit	TORSUB SAN	TORSUB STM			
Physical Tests							
solids, total suspended [TSS]		mg/L	350 mg/L	15 mg/L			
Microbiological Tests			No.				
coliforms, Escherichia coli [E. coli]		CFU/100mL		200			
				CFU/100mL			
Aggregate Organics							
biochemical oxygen demand [BOD]		mg/L	300 mg/L	15 mg/L			

Please refer to the General Comments section for an explanation of any qualifiers detected.

Key:

TORSUB	Ontario Toronto Sanitary Discharge Sewer By-Law 100-2016 (FEB 4,2016)
SAN	Toronto Sanitary Discharge Sewer By-Law
STM	Toronto Storm Discharge Sewer By-Law

QUALITY CONTROL INTERPRETIVE REPORT

Work Order	: WT2216451	Page	: 1 of 5
Client	: Terrapex Environmental Ltd.	Laboratory	: Waterloo - Environmental
Contact	: Brian Theimer	Account Manager	: Gayle Braun
Address	: 90 Scarsdale Rd.	Address	: 60 Northland Road, Unit 1
	Toronto ON Canada M3B2R7		Waterloo, Ontario Canada N2V 2B8
Telephone	416 245 0011	Telephone	: +1 519 886 6910
Project	: CT3580.00	Date Samples Received	: 03-Oct-2022 14:45
PO	:	Issue Date	: 12-Oct-2022 11:34
C-O-C number	: 20-1007992		
Sampler	: WN/ PB		
Site	:		
Quote number	: SOA		
No. of samples received	:1		
No. of samples analysed	:1		

This report is automatically generated by the ALS LIMS (Laboratory Information Management System) through evaluation of Quality Control (QC) results and other QA parameters associated with this submission, and is intended to facilitate rapid data validation by auditors or reviewers. The report highlights any exceptions and outliers to ALS Data Quality Objectives, provides holding time details and exceptions, summarizes QC sample frequencies, and lists applicable methodology references and summaries.

Key

Anonymous: Refers to samples which are not part of this work order, but which formed part of the QC process lot.

CAS Number: Chemical Abstracts Service number is a unique identifier assigned to discrete substances.

DQO: Data Quality Objective.

LOR: Limit of Reporting (detection limit).

RPD: Relative Percent Difference.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Summary of Outliers Outliers : Quality Control Samples

- <u>No</u> Method Blank value outliers occur.
- No Duplicate outliers occur.
- No Laboratory Control Sample (LCS) outliers occur
- No Test sample Surrogate recovery outliers exist.

Outliers: Reference Material (RM) Samples

• No Reference Material (RM) Sample outliers occur.

Outliers : Analysis Holding Time Compliance (Breaches)

• <u>No</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• No Quality Control Sample Frequency Outliers occur.

RIGHT SOLUTIONS | RIGHT PARTNER

Analysis Holding Time Compliance

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times, which are selected to meet known provincial and /or federal requirements. In the absence of regulatory hold times, ALS establishes recommendations based on guidelines published by organizations such as CCME, US EPA, APHA Standard Methods, ASTM, or Environment Canada (where available). Dates and holding times reported below represent the first dates of extraction or analysis. If subsequent tests or dilutions exceeded holding times, qualifiers are added (refer to COA).

If samples are identified below as having been analyzed or extracted outside of recommended holding times, measurement uncertainties may be increased, and this should be taken into consideration when interpreting results.

Where actual sampling date is not provided on the chain of custody, the date of receipt with time at 00:00 is used for calculation purposes.

Where only the sample date without time is provided on the chain of custody, the sampling date at 00:00 is used for calculation purposes.

Matrix: Water					Eva	aluation: × = I	Holding time excee	dance ; 🗸	= Within	Holding Time
Analyte Group	Method	Sampling Date	Extraction / Preparation				Analysis			
Container / Client Sample ID(s)			Preparation	Holding	g Times	Eval	Analysis Date Holding		Times	Eval
			Date	Rec	Actual			Rec	Actual	
Aggregate Organics : Biochemical Oxygen Demand - 5 day										
HDPE [BOD HT-4d] MW104A	E550	03-Oct-2022					05-Oct-2022	4 days	1 days	4
Microbiological Tests : E. coli (MF-mFC-BCIG)										
Sterile HDPE (Sodium thiosulphate) [ON MECP] MW104A	E012A.EC	03-Oct-2022					04-Oct-2022	48 hrs	21 hrs	4
Physical Tests : TSS by Gravimetry										
HDPE [ON MECP] MW104A	E160	03-Oct-2022					07-Oct-2022	7 days	4 days	4

Legend & Qualifier Definitions

Rec. HT: ALS recommended hold time (see units).

Quality Control Parameter Frequency Compliance

The following report summarizes the frequency of laboratory QC samples analyzed within the analytical batches (QC lots) in which the submitted samples were processed. The actual frequency should be greater than or equal to the expected frequency.

Matrix: Water	Evaluation: \star = QC frequency outside specification; \star = QC frequency within specification.								
Quality Control Sample Type				unt	Frequency (%)				
Analytical Methods	Method	QC Lot #	QC	Regular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)									
Biochemical Oxygen Demand - 5 day	E550	681368	1	12	8.3	5.0	✓		
E. coli (MF-mFC-BCIG)	E012A.EC	679158	1	15	6.6	5.0	✓		
TSS by Gravimetry	E160	685672	1	20	5.0	4.7	✓		
Laboratory Control Samples (LCS)									
Biochemical Oxygen Demand - 5 day	E550	681368	1	12	8.3	5.0	✓		
TSS by Gravimetry	E160	685672	1	20	5.0	4.7	✓		
Method Blanks (MB)									
Biochemical Oxygen Demand - 5 day	E550	681368	1	12	8.3	5.0	✓		
E. coli (MF-mFC-BCIG)	E012A.EC	679158	1	15	6.6	5.0	✓		
TSS by Gravimetry	E160	685672	1	20	5.0	4.7	✓		

Methodology References and Summaries

The analytical methods used by ALS are developed using internationally recognized reference methods (where available), such as those published by US EPA, APHA Standard Methods, ASTM, ISO, Environment Canada, BC MOE, and Ontario MOE. Reference methods may incorporate modifications to improve performance (indicated by "mod").

Analytical Methods	Method / Lab	Matrix	Method Reference	Method Descriptions
E. coli (MF-mFC-BCIG)	E012A.EC	Water	ON E3433 (mod)	Following filtration (0.45 µm), and incubation at 44.5±0.2°C for 24 hours, colonies exhibiting characteristic morphology of the target organism are enumerated.
	Waterloo -			
	Environmental			
TSS by Gravimetry	E160 Waterloo - Environmental	Water	APHA 2540 D (mod)	Total Suspended Solids (TSS) are determined by filtering a sample through a glass fibre filter, following by drying of the filter at $104 \pm 1^{\circ}$ C, with gravimetric measurement of the filtered solids. Samples containing very high dissolved solid content (i.e. seawaters, brackish waters) may produce a positive bias by this method. Alternate analysis methods are available for these types of samples.
Biochemical Oxygen Demand - 5 day	E550 Waterloo -	Water	APHA 5210 B (mod)	Samples are diluted and incubated for a specified time period, after which the oxygen depletion is measured using a dissolved oxygen meter.
	Environmental			Free chlorine is a negative interference in the BOD method; please advise ALS when free chlorine is present in samples.

QUALITY CONTROL REPORT

Work Order	WT2216451	Page :	1 of 4
Client	: Terrapex Environmental Ltd.	Laboratory	: Waterloo - Environmental
Contact	: Brian Theimer	Account Manager	: Gayle Braun
Address	:90 Scarsdale Rd.	Address	:60 Northland Road, Unit 1
	Toronto ON Canada M3B2R7		Waterloo, Ontario Canada N2V 2B8
Telephone	: 416 245 0011	Telephone	: +1 519 886 6910
Project	: CT3580.00	Date Samples Received	:03-Oct-2022 14:45
PO	:	Date Analysis Commenced	:04-Oct-2022
C-O-C number	: 20-1007992	Issue Date	: 12-Oct-2022 11:33
Sampler	: WN/ PB		
Site	:		
Quote number	SOA		
No. of samples received	:1		
No. of samples analysed	:1		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percent Difference (RPD) and Data Quality Objectives
- Method Blank (MB) Report; Recovery and Data Quality Objectives
- Laboratory Control Sample (LCS) Report; Recovery and Data Quality Objectives

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is conducted in accordance with US FDA 21 CFR Part 11.

Signatories	Position	Laboratory Department
Amanda Ganouri-Lumsden	Department Manager - Microbiology and Prep	Waterloo Microbiology, Waterloo, Ontario
Greg Pokocky	Supervisor - Inorganic	Waterloo Inorganics, Waterloo, Ontario

General Comments

The ALS Quality Control (QC) report is optionally provided to ALS clients upon request. ALS test methods include comprehensive QC checks with every analysis to ensure our high standards of quality are met. Each QC result has a known or expected target value, which is compared against predetermined Data Quality Objectives (DQOs) to provide confidence in the accuracy of associated test results. This report contains detailed results for all QC results applicable to this sample submission. Please refer to the ALS Quality Control Interpretation report (QCI) for applicable method references and methodology summaries.

Key :

Anonymous = Refers to samples which are not part of this work order, but which formed part of the QC process lot. CAS Number = Chemical Abstracts Service number is a unique identifier assigned to discrete substances. DQO = Data Quality Objective.

LOR = Limit of Reporting (detection limit). RPD = Relative Percent Difference

= Indicates a QC result that did not meet the ALS DQO.

Workorder Comments

Holding times are displayed as "---" if no guidance exists from CCME, Canadian provinces, or broadly recognized international references.

Laboratory Duplicate (DUP) Report

A Laboratory Duplicate (DUP) is a randomly selected intralaboratory replicate sample. Laboratory Duplicates provide information regarding method precision and sample heterogeneity. ALS DQOs for Laboratory Duplicates are expressed as test-specific limits for Relative Percent Difference (RPD), or as an absolute difference limit of 2 times the LOR for low concentration duplicates within ~ 4-10 times the LOR (cut-off is test-specific).

Sub-Matrix: Water				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Analyte	CAS Number	Method	LOR	Unit	Original Result	Duplicate Result	RPD(%) or Difference	Duplicate Limits	Qualifier
Physical Tests (QC	Lot: 685672)										
WT2216451-001	MW104A	solids, total suspended [TSS]		E160	3.0	mg/L	8.1	8.5	0.4	Diff <2x LOR	
Microbiological Test	s (QC Lot: 679158)										
WT2216451-001	MW104A	coliforms, Escherichia coli [E. coli]		E012A.EC	1	CFU/100mL	35	27	25.8%	65%	
Aggregate Organics (QC Lot: 681368)											
WT2216451-001	MW104A	biochemical oxygen demand [BOD]		E550	2.0	mg/L	3.1	2.9	5.0%	30%	

Method Blank (MB) Report

A Method Blank is an analyte-free matrix that undergoes sample processing identical to that carried out for test samples. Method Blank results are used to monitor and control for potential contamination from the laboratory environment and reagents. For most tests, the DQO for Method Blanks is for the result to be < LOR.

Sub-Matrix: Water					
Analyte	CAS Number Method	LOR	Unit	Result	Qualifier
Physical Tests (QCLot: 685672)					
solids, total suspended [TSS]	E160	3	mg/L	<3.0	
Microbiological Tests (QCLot: 679158)					
coliforms, Escherichia coli [E. coli]	E012A.EC	1	CFU/100mL	<1	
Aggregate Organics (QCLot: 681368)					
biochemical oxygen demand [BOD]	E550	2	mg/L	<2.0	

Laboratory Control Sample (LCS) Report

A Laboratory Control Sample (LCS) is an analyte-free matrix that has been fortified (spiked) with test analytes at known concentration and processed in an identical manner to test samples. LCS results are expressed as percent recovery, and are used to monitor and control test method accuracy and precision, independent of test sample matrix.

Sub-Matrix: Water				Laboratory Control Sample (LCS) Report					
					Recovery (%)	Recovery Limits (%)			
Analyte	CAS Number Method	LOR	Unit	Concentration	LCS	Low	High	Qualifier	
Physical Tests (QCLot: 685672)									
solids, total suspended [TSS]	E160	3	mg/L	150 mg/L	106	85.0	115		
Aggregate Organics (QCLot: 681368)									
biochemical oxygen demand [BOD]	E550	2	mg/L	198 mg/L	102	85.0	115		

Otain of Cantody (COC) / Analytical Request Port

Canada Tali Pase 1 and Gal Mill

ľ LC Annual (1 Canota St SALES STORES P Ì ł والمسترية الريديد أعلنا ومناقبهم إليهما فسأ 1.00 □ ∦ Į Z nichter (nichter bestehten sicher ÷. CT3530.00 Other Street and Design State of Fernand Ta Ş þ يتزيد بستاعين Magnets SAV man Seinerschi LH. Service Land ALC: NOTE I HUNYA 100.3.102 Hits وموصر مرغفتها إيلارين The subdition of the second state of the second Steam and Senitry Study Crit 22 black melite the Jeleford ويتخذف والالارد الاراد المركبة والسولاء منتما ind to fue encourte, parte Lie & females.com 1913 a. Suthans @ forman.can. materia à Mainert Samait.com Not of the second strate which are a second 1. C. S. C. S. Hits Paper Panet fand innerse Date なまま ナ S. (#****** 103-0-122 F 2 Į. 111 falamaters city of Toronto Fording Code; W/PB f - Har I have designed 「「「「「ないない」」 ļ (number on D E The second s 25 5 BER OF CONTAINER TSS BOD Х į × Coli Ĩ للبيني للكريني ليعتب 2007 1007992 ļ \$ ł ľ Environmental Orninkon Waterloo W12218451 Ī LES ON HOLD بورونيور ŀ CTED HAZARD (see nate

8-162, ec- 478

HM RK (450 Dufferin) Ltd. 474 Wellington Street West Toronto, ON M5V 1E3 t: 416.510.1700 www.hullmark.ca

11/3/2022

Attention: Executive Director, Engineering and Construction Services c/o Manager, Development Engineering Toronto City Hall 100 Queen Street West, 24th Floor Toronto, ON M5H 2N2

cc: General Manager, Toronto Water c/o Manager, Environmental Monitoring and Protection Unit 30 Dee Avenue Toronto, ON M9N 1S9

Dear Sir or Madam,

I, **JEFF HULL**, confirm and undertake that I will construct and maintain all building(s) on the subject lands **450-458 DUFFERIN STREET** in a manner which shall be completely water-tight below grade and resistant to hydrostatic pressure without any necessity for Private Water Drainage System (subsurface drainage system) consisting of but not limited to weeping tile(s), foundation drain(s), private water collection sump(s), private water pump or any combination thereof for the disposal of private water on the surface of the ground or to a private sewer connection directly or indirectly or drainage system for disposal directly or indirectly in a municipal sewer.

Jeff Hull, ASO

Name (printed) and Title

jeff@hullmark.ca Email

Signature

I, JEFF HULL, have the authority to bind the corporation

November 3, 2022

Attention:

Executive Director, Engineering and Construction Services c/o Manager, Development Engineering 55 John Street, 16th Floor Toronto ON M5V 3C6

cc:

General Manager, Toronto Water c/o Manager, Environmental Monitoring and Protection Unit 30 Dee Ave, Toronto ON M9N 1S9

Re: 450 Dufferin Street

Dear Sir or Madam,

I, Anthony Mirvish, confirm that all buildings on the subject lands at 450 Dufferin Street, Toronto ON can be constructed completely water-tight below grade in a manner that will resist hydrostatic pressure without any necessity for Private Water Drainage System (subsurface drainage system) consisting of but not limited to weeping tile(s), foundation drain(s), private water collection sump(s), private water pump or any combination thereof for the disposal of private water on the surface of the ground or to a private sewer connection directly or indirectly or drainage system for disposal directly or indirectly in a municipal sewer.

Regards, Honeycomb Group Inc.

Anthony Mirvish, P. Eng. Principal <u>anthony.mirvish@honeycombgroup.ca</u> 416-451-9806

